5,772 research outputs found

    Sterile neutrinos in neutrinoless double beta decay

    Full text link
    We study possible contribution of the Majorana neutrino mass eigenstate νh\nu_h dominated by a sterile neutrino component to neutrinoless double beta (0νββ0\nu\beta\beta) decay. From the current experimental lower bound on the 0νββ0\nu\beta\beta-decay half-life of 76^{76}Ge we derive stringent constraints on the νh−νe\nu_h-\nu_e mixing in a wide region of the values of νh\nu_h mass. We discuss cosmological and astrophysical status of νh\nu_h in this mass region.Comment: 6 pages, 1 figure; v2 added comments and reference

    Rotating three-dimensional solitons in Bose Einstein condensates with gravity-like attractive nonlocal interaction

    Full text link
    We study formation of rotating three-dimensional high-order solitons (azimuthons) in Bose Einstein condensate with attractive nonlocal nonlinear interaction. In particular, we demonstrate formation of toroidal rotating solitons and investigate their stability. We show that variational methods allow a very good approximation of such solutions and predict accurately the soliton rotation frequency. We also find that these rotating localized structures are very robust and persist even if the initial condensate conditions are rather far from the exact soliton solutions. Furthermore, the presence of repulsive contact interaction does not prevent the existence of those solutions, but allows to control their rotation. We conjecture that self-trapped azimuthons are generic for condensates with attractive nonlocal interaction

    Limits to compression with cascaded quadratic soliton compressors

    Get PDF
    We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong. This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that it is theoretically possible to reach the single-cycle regime by compressing high-energy fs pulses for wavelengths λ=1.0−1.3μm\lambda=1.0-1.3 \mu{\rm m} in a β\beta-barium-borate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. However, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account.Comment: 16 pages, 5 figures, submitted to Optics Expres

    Photoemission studies of the noble metals, the cuprous halides, and selected alkali halides

    Get PDF
    Photoemission studies of noble metals, cuprous halides, and alkali halide

    Pattern formation in the nonlinear Schrödinger equation with competing nonlocal nonlinearities

    Get PDF
    We study beam propagation in the framework of the nonlinear Schrödinger equation with competing Gaussian nonlocal nonlinearities. We demonstrate that such system can give rise to self-organization of light into stable states of trains or hexagonal arrays of filaments, depending on the transverse dimensionality. This long-range ordering can be achieved by mere unidirectional beam propagation. We discuss the dynamics of long-range ordering and the crucial role which the phase of the wavefunction plays for this phenomenon. Furthermore we discuss how transverse dimensionality affects the order of the phasetransition

    Constraining Mass Spectra with Sterile Neutrinos from Neutrinoless Double Beta Decay, Tritium Beta Decay and Cosmology

    Full text link
    We analyze the constraints on neutrino mass spectra with extra sterile neutrinos as implied by the LSND experiment. The various mass related observables in neutrinoless double beta decay, tritium beta decay and cosmology are discussed. Both neutrino oscillation results as well as recent cosmological neutrino mass bounds are taken into account. We find that some of the allowed mass patterns are severely restricted by the current constraints, in particular by the cosmological constraints on the total sum of neutrino masses and by the non-maximality of the solar neutrino mixing angle. Furthermore, we estimate the form of the four neutrino mass matrices and also comment on the situation in scenarios with two additional sterile neutrinos.Comment: 40 pages, 9 figures. Minor changes, matches version in PR

    Collapse in the nonlocal nonlinear Schr\"odinger equation

    Full text link
    We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr\"{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both, Lyapunoff's method and virial identities. We find that for for a one-dimensional case, i.e. for n=1n=1, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension n≥2n\geq2 and singular kernel ∼1/rα\sim 1/r^\alpha, no collapse takes place if α<2\alpha<2, whereas collapse is possible if α≥2\alpha\ge2. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of ∼1/r2\sim 1/r^2 kernels. Moreover, different evolution scenarios for the three dimensional physically relevant case of Bose Einstein condensate are studied numerically for both, the ground state and a higher order toroidal state with and without an additional local repulsive nonlinear interaction. In particular, we show that presence of an additional local repulsive term can prevent collapse in those cases

    Quadratic solitons as nonlocal solitons

    Get PDF
    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.Comment: 4 pages, 3 figure

    Nonlocal description of X waves in quadratic nonlinear materials

    Get PDF
    We study localized light bullets and X waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multidimensional nonlinear waves. For X waves we show that a local cascading limit in terms of a nonlinear Schrödinger equation does not exist—one needs to use the nonlocal description, because the nonlocal response function does not converge toward a function. Also, we use the nonlocal theory to show that the coupling to the second harmonic is able to generate an X shape in the fundamental field despite having anomalous dispersion, in contrast to the predictions of the cascading limit

    Singlet Fermionic Dark Matter explains DAMA signal

    Full text link
    It has been suggested that, considering channeling effect, the order of a few GeV dark matters which are elastically scattered from detector nuclei might be plausible candidates reconciling the DAMA annual modulation signal with the results of other null experiments. We show that Singlet Fermionic Dark Matter can be such a dark matter candidate, simultaneously providing the correct thermal relic density which is consistent with the WMAP data.Comment: 9 pages, 3 figure
    • …
    corecore