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Abstract: We study cascaded quadratic soliton compressors and address
the physical mechanisms that limit the compression. A nonlocal model is
derived, and the nonlocal response is shown to have an additional oscillatory
component in the nonstationary regime when the group-velocity mismatch
(GVM) is strong. This inhibits efficient compression. Raman-like pertur-
bations from the cascaded nonlinearity, competing cubic nonlinearities,
higher-order dispersion, and soliton energy may also limit compression,
and through realistic numerical simulations we point out when each factor
becomes important. We find that it is theoretically possible to reach the
single-cycle regime by compressing high-energy fs pulses for wavelengths
λ = 1.0−1.3 μm in a β -barium-borate crystal, and it requires that the sys-
tem is in the stationary regime, where the phase mismatch is large enough
to overcome the detrimental GVM effects. However, the simulations show
that reaching single-cycle duration is ultimately inhibited by competing
cubic nonlinearities as well as dispersive waves, that only show up when
taking higher-order dispersion into account.
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1. Introduction

In order to compress optical pulses a nonlinear phase shift is first induced on the pulse by self-
phase modulation (SPM) from the cubic nonlinear response of, e.g., an optical fiber [1]. The
phase shift creates a chirp across the pulse, so compression can subsequently be achieved in a

#91405 - $15.00 USD Received 4 Jan 2008; revised 18 Feb 2008; accepted 22 Feb 2008; published 25 Feb 2008

(C) 2008 OSA 3 March 2008 / Vol. 16,  No. 5 / OPTICS EXPRESS  3274



Fig. 1. Numerical simulations of soliton compression of a λ1 = 1064 nm 200 fs FWHM
pulse in a β -barium-borate crystal with a soliton number of Neff = 8. (a) and (b) Temporal
and spectral components of the FW |U1|2 = I1/Iin in the stationary regime (Δk = 50 mm−1,
Iin = 59 GW/cm2). The pulse is compressed to 6 fs at the optimal compression point [z =
zopt, dashed line, cuts in (e) and (f)]. (c) and (d) In the nonstationary regime (Δk = 30 mm−1,
Iin = 29 GW/cm2), a 17 fs pulse compressed pulse with trailing oscillations is observed.

dispersive material (e.g., a grating pair). In cubic soliton compressors both the SPM-induced
chirp and the compression is achieved in the same material [2]. The self-focusing cubic non-
linearity requires anomalous dispersion to compress the pulse, which restricts the accessible
wavelength regime for soliton compression.

Recent progress has shown that cascaded quadratic soliton compressors (CQSCs) may effi-
ciently compress high-energy fs pulses down to ultra-short few-cycle pulses [3–11]. Here the
nonlinear phase shift is induced due to phase-mismatched second-harmonic generation (SHG),
which acts as a cascaded quadratic nonlinear process. Because of the cyclic energy transfer to
the second harmonic (SH), the pump, or fundamental wave (FW), effectively experiences an
SPM of cubic nature. The advantage is that this effective cubic nonlinearity can be made self-
defocusing because its sign is controlled by the sign of the phase-mismatch parameter [12–15],
and therefore normal dispersion can be used to compress the FW. This opens for soliton com-
pression in the visible and near-infrared regimes.

Since the CQSC exploits an effective self-defocusing cubic term from cascaded quadratic ef-
fects, the self-focusing cubic nonlinearity inherent to any transparent material must be counter-
balanced and then exceeded to achieve compression [3,6,11,14]. On the other hand, the collapse
problems of bulk self-focusing cubic nonlinear media can be avoided if the self-defocusing cas-
caded nonlinearity is strong enough [16]. Thus, the CQSC works in a bulk configuration even
with multi-mJ input pulse energies [14].
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Experimentally, compression of mJ pulses with cascaded quadratic nonlinearities was ob-
served at 800 nm from 120 fs down to 30 fs when the compression was done externally (using
either a prism pair or a near-lossless block of calcite) [14], and when working as a soliton com-
pressor from 120 fs to 45 fs [3] and from 35 fs to 20 fs [5]. In an important recent advance,
spatially uniform compression using super-Gaussian flat-top beams was demonstrated also at
800 nm [7]. At 1260 nm compression to 12 fs (3 optical cycles) was achieved [6], while at
telecom wavelengths compression down to 35 fs was observed [4,8]. It was clear already in the
beginning that group-velocity mismatch (GVM) was a limiting factor for compression [6, 14]:
In the stationary regime clean compression is possible, while in the nonstationary regime GVM
distorts the compressed pulse too much to be of any practical use, and severe reductions in com-
pression capabilities is observed. As an example of this, the numerical simulations in Fig. 1
compare the pulse compression performance under equal conditions in the two regimes. In the
stationary regime a 6 fs compressed pulse is observed while the nonstationary regime the GVM
effects are much stronger, resulting in a 17 fs compressed pulse with trailing oscillations.

Significant progress in understanding this was recently made by using nonlocal soliton the-
ory. The GVM-induced Raman-like term found previously [6,17] was shown to originate from
a temporally nonlocal response function [10]. The nonlocal behaviour appears when approx-
imating the phase-mismatched dispersive SHG process in the cascading limit as a nonlinear
convolution between the FW and a nonlocal response function [18] (see Ref. [19] for a review
on optically nonlocal media). An accurate prediction of when the system is stationary or non-
stationary was presented, and the nonlocal theory predicted that in the nonstationary regime an
oscillatory chirp, built up on the FW for short enough pulses, limited the amount of compres-
sion achievable and qualitatively explained the trailing oscillations observed. It was also argued
that the temporal time scales of the nonlocal response function had an influence on the final
compressed pulse duration, but a systematic investigation was not made.

On the other hand, a recent study showed that the performance of the CQSC can conveniently
be described by scaling laws involving an effective soliton number N 2

eff = N2
SHG−N2

Kerr, appear-
ing as the difference between the SHG and the Kerr soliton numbers [11]. Since N eff depends
only on input parameters the compressed pulse properties can be predicted using these scal-
ing laws. Appropriate input parameters can then be found giving compression to single-cycle
duration. However, neither the experiments nor the numerical simulations have ever observed
single-cycle compression. Moreover, optimal compression seemed to occur at certain phase-
mismatch values, which the analysis of [11] could not predict.

The purpose of the present theoretical and numerical analysis is to understand these optimal
operation points. This requires understanding the compression limits in different parameter
regions. Based on the full propagation equations of Sec. 2, we derive the reduced nonlocal
model in details in Sec. 3, and Sec. 4 contains an in-depth analysis of it by imposing the weakly
nonlocal limit. Section 5 is devoted to an extensive numerical analysis of the full equations,
where the nonlocal theory is used to understand the physics behind the compressed pulses.

2. Propagation equations

The SHG propagation equations in the slowly-evolving wave-approximation (SEWA) are used
to study pulses in a bulk quadratic nonlinear crystal with single-cycle temporal resolution. The
dimensionless equations for the FW (ω1) and SH (ω2 = 2ω1) fields U1,2(ξ ,τ) are [11, 20]

(i∂ξ + D̂′
1)U1 + |Δk′|1/2NSHGŜ′1U

∗
1U2eiΔk′ξ +N2

KerrŜ
′
1U1

(|U1|2 +Bn̄|U2|2
)

= 0, (1a)

(i∂ξ − id′
12∂τ + D̂′

2,eff)U2 + |Δk′|1/2NSHGŜ′2U
2
1 e−iΔk′ξ

+2n̄2N2
KerrŜ

′
2U2

(|U2|2 +Bn̄−1|U1|2
)

= 0. (1b)
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Diffraction and the non-instantaneous cubic Raman response are neglected. Higher order dis-

persion (HOD) is included through the operator D̂′
j ≡ ∑md

m=2 imδ (m)
j

∂ m

∂τm , with the dimension-

less dispersion coefficients δ (m)
j ≡ k(m)

j (T m−2
in |k(2)

1 |m!)−1 and k(m)
j ≡ ∂ mk j/∂ωm|ω=ω j . Since

k j = n jω j/c is known analytically through the Sellmeier equations of [21], the exact disper-

sion D̂ j = k j(ω)− (ω − ω j)k
(1)
1 − k j(ω j) is used in the numerics [11], corresponding to a

dispersion order md = ∞. n j is the refractive index, n̄ = n1/n2, and the phase mismatch of the
SHG process is Δk = k2 − 2k1. The Kerr cross-phase modulation (XPM) term B = 2 for type
0 SHG while for type I SHG B = 2/3 [11]. The time coordinate moves with the FW group

velocity vg,1 = 1/k(1)
1 , giving the GVM term d12 = v−1

g,1 − v−1
g,2. Equations (1) are reported in

dimensionless form, τ = t/Tin, where Tin is the FW input pulse duration, ξ = z/LD,1, where

LD,1 = T 2
in/|k(2)

1 | is the FW dispersion length, and finally U1 = E1/Ein and U2 = E2/
√

n̄Ein.

Here Ein is the amplitude of the peak electric input field, d ′
12 = d12Tin/|k(2)

1 |, and Δk′ = ΔkLD,1.
This scaling gives the quadratic (SHG) and cubic (Kerr) soliton numbers [6, 11]

N2
SHG =

LD,1E
2
inω2

1 d2
eff

c2n1n2|Δk| , N2
Kerr =

LD,1nKerr,1E
2
inω1

c
(2)

where deff is the effective quadratic nonlinearity, and nKerr, j = 3Re(χ (3))/8n j is the cubic (Kerr)
nonlinear refractive index. NSHG might seem poorly defined in Eqs. (1) because of the factor
|Δk′|1/2 in front of it, but the choice will become clear later. Self-steepening is included through

the operators Ŝ′j ≡ 1 + i(ω jTin)−1 ∂
∂τ . D̂′

2,eff = D̂′
2 + Ŝ′−1

2
ν
2

∂ 2

∂τ2 , where ν ≡ cd2
12/ω2n2|k(2)

1 |
[11, 20], is an effective SH dispersion operator, whose existence is a consequence of self-
steepening and GVM. This is the price to pay in the SEWA framework to reach single-cycle
resolution when diffraction is neglected. We stress that all primed symbols in our notation are
the dimensionless form of the corresponding unprimed symbol.

3. Nonlocal model: reduced equation in the cascading limit

We now seek to get some physical insight into the full SEWA model. In Ref. [10] it was shown
that in the cascading limit |Δk′| � 1 Eqs. (1) can be reduced to a single equation for the FW

[
i

∂
∂ξ

− 1
2

∂ 2

∂τ2

]
U1 +N2

KerrU1|U1|2 −N2
SHGU∗

1

∫ ∞

−∞
dsR±(s)U2

1 (ξ ,τ − s) = 0. (3)

In this derivation both self-steepening and HOD were neglected ( Ŝ j = 1, md = 2), but as shown
later this can straightforwardly be relaxed. The phase-mismatch parameter must be positive,
Δk′ > 0, as to have a self-defocusing cascaded nonlinearity. Solitons are then supported when

the group-velocity dispersion (GVD) is normal, so k (2)
j > 0 was assumed. Additionally the Kerr

XPM terms were neglected, otherwise the nonlocal approach fails. This dimensionless gener-
alized nonlinear Schrödinger equation (NLSE) shows that the cascaded quadratic nonlinearity
imposes a temporal nonlocal response on the FW, governed by the nonlocal response functions
R± [which will be derived below, see also Fig. 2(a,c)]. This model quantified the previous qual-

itative definitions [14, 17] of the stationary and nonstationary regimes. When d 2
12 > 2Δkk(2)

2
the system is in the nonstationary regime and the oscillatory response function R− must be
used. Using characteristic length scales this demand reads L2

GVM < LcohLD,2/2π , which can be
interpreted as follows. In the nonstationary regime the GVM dominates, and its length scale
LGVM = Tin/|d12| becomes shorter than one controlled by the product of the coherence length

Lcoh = π/|Δk| and the SH GVD length scale LD,2 = T 2
in/|k(2)

2 |. When d2
12 < 2Δkk(2)

2 the system
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is in the stationary regime and the localized response function R+ must be used. We will now
derive Eq. (3) in details.

In the cascading limit Δk′ � 1 the nonlocal approach takes the ansatz

U2(ξ ,τ) = φ2(τ)exp(−iΔk′ξ ) (4)

This ansatz is assuming that all the dynamics in the propagation direction of the SH is dom-
inated by the phase mismatch, and the condition for making this ansatz is that the coherence
length Lcoh = π/Δk is much shorter than any other characteristic length scale. This is true in
the cascading limit except when the FW is extremely short, in which case the GVM length
LGVM = Tin/|d12| can become on the order of Lcoh. Assuming N2

KerrU2 � Δk′1/2NSHG we may
discard the Kerr terms in Eq. (1b), and get an ordinary differential equation (ODE)

δ (2)
2

d2φ2

dτ2 + id′
12

dφ2

dτ
−Δk′φ2 = Δk′1/2NSHGU2

1 (5)

where for simplicity we have only considered up to 2nd order dispersion and neglected self-
steepening and the SEWA correction to the dispersion. We will come back to this point later.
Using the Fourier transform pair φ̃2(Ω) = F [φ2](Ω) ≡ (2π)−1/2 ∫ ∞

−∞ dτeiΩτφ2(τ) and φ2(τ) =
F−1[φ̃2](τ)≡ (2π)−1/2 ∫ ∞

−∞ dΩe−iΩτφ̃2(Ω) we may solve the ODE (5) in the frequency domain

φ̃2(Ω) = −(2π/Δk′)1/2NSHGR̃(Ω)F [U2
1 ](Ω), R̃(Ω) ≡ Δk′(2π)−1/2

δ (2)
2 Ω2 −d′

12Ω + Δk′
(6)

We now use the convolution theorem, so that in the time domain Eq. (6) becomes a convolution

φ2(τ) = −NSHG√
Δk′

∫ ∞

−∞
dsR(s)U2

1 (ξ ,τ − s) (7)

The temporal nonlocal response function R(τ) = F −1[R̃(Ω)]. Now, using Eq. (7) with the
ansatz (4) in Eq. (1a) we arrive at Eq. (3) under the aforementioned approximations.

In order to evaluate the temporal nonlocal response function it is convenient to rewrite R̃ as

R̃(Ω) = (2π)−1/2 Ω′2
a + sbΩ′2

b

(Ω−Ω′
a)2 + sbΩ′2

b

(8)

where we have introduced the dimensionless frequencies and the sign parameters

Ω′
a =d′

12/2δ (2)
2 , Ω′

b =|Δk′/δ (2)
2 −Ω′2

a |1/2 (9a)

sa =sgn[Ω′
a], sb =sgn[Δk′/δ (2)

2 −Ω′2
a ] (9b)

As we argue below, sb = +1 corresponds to the stationary regime. In this case Eq. (8) be-
comes a Lorentzian centered in Ω ′

a and with the FWHM 2Ω′
b, see Fig. 2(b). The roots in the

denominator of Eq. (8) are complex Ω = Ω ′
a ± iΩ′

b. The dimensionless [22] temporal response
function, R+(τ), can readily be calculated by taking the inverse Fourier transform

R+(τ) =
τa

2 + τb
2

2τ2
a τb

exp(−isaτ/τa)exp(−|τ|/τb) (10)

where we have introduced the dimensionless characteristic nonlocal time scales

τa = |Ω′
a|−1 = 2|δ (2)

2 /d′
12|, τb = Ω′−1

b = |Δk′/δ (2)
2 −Ω′2

a |−1/2 (11)
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Fig. 2. The dimensional nonlocal response functions [22] in the (a,b) stationary regime
(sb = +1) and (c,d) nonstationary regime (sb = −1) as calculated for the simulations in
Fig. 1. The cusp at t = 0 of |R±(t)| is typical for a Lorentzian response. The spectral
content of U2

1 = sech2(t/Tin) having 100, 20, and 10 fs FWHM duration is shown in (b,d).

The localized nature of Eq. (10) is shown in Fig. 2(a), and τ b controls the width of |R+| while
τa is the period of the phase oscillations. Note that Eq. (6) is defined so

∫ ∞
−∞ dτR+(τ) = 1.

In the nonstationary regime sb = −1, and R̃(Ω) has two simple poles at Ω = Ω′
a ±Ω′

b ≡ Ω′±,
making R̃(Ω) diverge [see Fig. 2(d)]. R−(τ) = F−1[R̃−(Ω)] exists as a Cauchy principal value

R−(τ) =
τa

2 − τb
2

2τ2
a τb

exp(−isaτ/τa)sin(|τ|/τb) (12)

In contrast to R+, this response function is not localized, and the oscillations are a consequence
of the two poles in R̃−(Ω) [see the example shown in Fig. 2(c)].

Having derived the temporal nonlocal response functions, the issues concerning the station-
ary and nonstationary regimes can be addressed. In Ref. [17] the nonstationary regime was
defined as when GVM effects prevent the build-up of a nonlinear phase shift, which when
applied to soliton compression consequently results in poor compression [6]. Based on the na-
ture of the nonlocal response functions, we can now clarify that the boundary to the stationary
regime is when sb changes sign. On dimensional form this happens when Δk = Δk sr, with

Δksr =
d2

12

2k(2)
2

(13)

Thus, to be in the stationary regime the phase-mismatch must be significantly large, Δk > Δk sr.
When GVM is weak compared to the phase mismatch then sb = +1, and the response func-
tion (R+) is monotonously decaying in magnitude: the convolution in the Kerr-like SPM term
in Eq. (3) provides a finite temporal response. Therefore this must correspond to the station-
ary regime. Instead when GVM is strong compared to the phase mismatch then s b = −1, and
the response function (R−) is oscillating and non-decaying: the temporal response from the
convolution is no longer finite. Thus, this must correspond to the nonstationary regime.
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4. The weakly nonlocal limit

The nonlocal response in Eq. (3) can be better understood in the weakly nonlocal limit, in
which the width of the nonlocal response function is much narrower than the width of U 2

1 .
The resulting simplified equation gives a better physical insight [23], and is important be-
cause it governs the initial dynamics (until pulse compression makes U1 so short that the
nonlocal response is no longer weak). We evaluate the convolution in the frequency domain∫ ∞
−∞ dsR(s)U2

1 (ξ ,τ − s) =
∫ ∞
−∞ dΩe−iΩτ R̃(Ω)F [U2

1 ](Ω) for convenience. In the weakly nonlo-
cal limit R̃(Ω) is approximated by a 1st order expansion around Ω = 0, where F [U 2

1 ](Ω) is
non-vanishing. This holds when R̃(Ω) varies slowly compared to F [U 2

1 ](Ω). In this case

R̃(Ω)F [U2
1 ](Ω) �

[
R̃(Ω = 0)+ Ω

dR̃
dΩ

|Ω=0

]
F [U2

1 ](Ω) (14)

which in the time domain equivalently is R(s)U 2
1 (ξ ,τ −s)� R(s)

[
U2

1 (ξ ,τ)− s∂U2
1 (ξ ,τ)/∂τ

]
.

However, in the nonstationary regime the frequency integral
∫ ∞
−∞ dΩe−iΩτ R̃(Ω)F [U2

1 ](Ω) is
done over two simple poles located on the Ω-axis. Using the residue theorem the integral can
be evaluated as a contour integral, which has a contribution from the Cauchy principal value of
the integral, and a contribution from deforming the integration contour around the poles on the
real Ω-axis. The residual contributions from the poles to the frequency integral are [24]

ρ(τ,U1) = isgn(τ)
√

π
2

τ2
a − τ2

b

2τ2
a τb

[
e−iτΩ′

+F [U2
1 ](Ω′

+)− e−iτΩ′−F [U2
1 ](Ω′

−)
]

(15)

which consist of an oscillatory component in form of complex exponentials with frequen-
cies Ω′± each weighted by the spectral strength of U 2

1 at that frequency. Thus, the influence
of this contribution becomes important when the FW is short enough for its spectrum to
cover the range where Ω ′± are located, cf. Fig. 2(d). Using Eq. (15) and (2π) 1/2R̃(0) = 1 and
(2π)1/2dR̃/dΩ|Ω=0 = 2Ω′

a/(Ω′2
a + sbΩ′2

b ), the nonlocal convolution is

∫ ∞

−∞
dsR(s)U2

1 (ξ ,τ − s) �U2
1 + isaτR,SHGU1

∂U1

∂τ
+

1− sb

2
ρ(τ,U1) (16)

Now introducing the effective soliton number N 2
eff = N2

SHG −N2
Kerr [11], Eq. (3) becomes

[
i

∂
∂ξ

− 1
2

∂ 2

∂τ2

]
U1 − N2

effU1|U1|2 = N2
SHG

[
isaτR,SHG|U1|2 ∂U1

∂τ
+

1− sb

2
U∗

1 ρ(τ,U1)
]

(17)

The first term on the RHS is a GVM-induced Raman-like perturbation caused by the cascaded
SHG nonlinearity. It is Raman-like due to the asymmetry of R± [10], stemming from the phase
term exp(−isaτ/τa) in Eqs. (10) and (12). It has the characteristic dimensionless time τ R,SHG ≡
4|Ω′

a|/(Ω′2
a + sbΩ′2

b ) = 2|d′
12|/Δk′ [6, 10, 11, 17], which on dimensional form reads

TR,SHG = τR,SHGTin = 2|d12|/Δk (18)

The direct dependence on the GVM-parameter d 12 implies that the Raman-like perturbation
disappears in absence of GVM. Ref. [10] also derived Eq. (17) in the stationary regime (s b =
+1) [25], but the contribution U ∗

1 ρ(τ,U1) in the nonstationary regime (sb =−1) is a new result.
Eq. (17) is a very strong result: It states that in the weakly nonlocal limit the effective soliton

number Neff can be used in the scaling laws of [11] to predict, e.g., the optimal compression
point. Previously these scaling laws were thought to hold only in the stationary regime [10,11].
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The result also tells us that in the weakly nonlocal limit, a central observation of Ref. [6] is
confirmed: for a given, fixed value of Δk, the Raman-like effect of the first term of the RHS
of Eq. (17) becomes increasingly significant with increasing N 2

SHG, thus limiting the possible
compression ratio. However, it is now clear that in the nonstationary regime, the Raman-like
distortion is accompanied by an oscillatory perturbation term U ∗

1 ρ(t,U1) which also increases
with N2

SHG. In both the stationary and nonstationary regimes the Raman-like distortions place
a limitation on the maximum soliton order, but in the nonstationary regime both terms on the
RHS of Eq. (17) distort the compression, and the combined effect is more severe (see also
Sec. 5). On the other hand, when NSHG is small these detrimental effects are weak: thus, as
previously observed by both numerical simulations and experiments [3, 5, 26], it is possible to
generate clean compressed pulses even in the nonstationary regime.

The weakly nonlocal approximation applies in the stationary regime when t b � Δt, where Δt
is the FW pulse duration and tb = τbTin. But when does it apply in the nonstationary regime?
We know that the width ΔΩ of F [U 2

1 ] is ΔΩ ∝ Δt−1. Referring to Fig. 2(d) we must require
that the positions of the two poles Ω± be sufficiently far away from the frequency range, where
F [U2

1 ] is nonvanishing, i.e., |Ω±|� ΔΩ. In physical units this implies that the weakly nonlocal
limit in the nonstationary regime can be expressed by the requirement Δt � t atb/|ta − tb|.

Let us evaluate this requirement. It is important to notice from Eq. (11) that t b diverges
at the transition Δksr, see also Fig. 3(a). Thus, in the nonstationary regime the requirement
Δt � tatb/|ta − tb| holds even for quite short pulses as long as ta and tb are not too similar. This
is generally true close to the transition Δksr, while away from the transition tb � ta because Δk
gets small, see Eq. (11) and Fig. 3(a). In this case we can no longer be sure to be in the weakly
nonlocal limit. In the stationary regime the system will initially be in the weakly nonlocal limit
Δt � tb except close to the transition Δksr, where tb diverges. We finally remark that ta also may
diverge when GVM is negligible. This implies that the factor e−isaτ/τa = 1, so R(τ) becomes
real and symmetric. Thus, the 1st order correction on the RHS of Eq. (17) disappears because
the Raman-like perturbation vanishes (TR,SHG = 0) and a 2nd order correction must be made.

Self-steepening can be included in the nonlocal theory: In Eqs. (3),(17) Ŝ′1 would act on
all nonlinear terms and Eq. (5) would have Ŝ′2 acting on the RHS. In frequency domain this
would imply a self-steepening–corrected response R̃ss(Ω) ≡ R̃(Ω)[1+(ω2Tin)−1Ω]. This does
not change Δksr, and would only affect the nonlocal behavior for extremely short input pulses.
Lastly, the NLS-like nonlocal Eq. (17) will have the operator Ŝ′1 acting on all nonlinear terms. It
should also be stressed that self-steepening can affect the Raman-like term in Eq. (17) [20], but
this effect does not appear in the nonlocal model used here because this would require taking
into account higher-order perturbation terms [i.e., making a more elaborate ansatz than Eq. (4)].

5. Numerical results and discussion

This section presents realistic numerical simulations of Eq. (1). The nonlocal theory is used
to understand these results. It is important to stress that the theory neglects Kerr XPM effects
and that the coherence length is the shortest length scale in the system. This latter requirement
implies that the system can initially be well described by the nonlocal theory, but as the pulse is
compressed the GVM (and other length scales) can become so short that this is no longer true.
Therefore the nonlocal model will not always quantitatively be able to predict the outcome of
the numerical simulations and the experiments. However, since the nonlocal model often will
be an adequate approximation for a large part of the propagation through the nonlinear medium,
we can still use it to understand the physics behind the temporal dynamics until that happens.

We will now show that there are two main categories of compression limitations.

1. Effects limiting the phase-mismatch range where compression is possible and efficient.
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Fig. 3. Data from numerical simulations of the full SEWA Eqs. (1) using the same para-
meters as in Fig. 1 and varying Δk. (a) The FW duration Δtopt = ΔtFWHM

opt /1.76 at z = zopt
is shown both for the full SEWA model (1), and when neglecting the Kerr XPM terms.
The lines show the nonlocal time scales ta,b = Tinτa,b, the characteristic Raman-like time
TR,SHG = 2|d12|/Δk, and the predicted Δtopt from the scaling laws [11] as well as the pre-
dicted Δtcorr

opt when correcting for XPM effects on Neff. tb as calculated using only up to
second-order dispersion (md = 2, gray curve) is also shown. The right ordinate shows time
normalized to the single-cycle pulse duration tsc = 2.0 fs. Note that below Δk = 10 mm−1

the cascading limit breaks down [12]. (b) The SHG and Kerr soliton numbers required to
have Neff = 8 fixed, achieved by adjusting Iin. The corrected effective soliton number due
to XPM effects Ncorr

eff is also shown.

(a) In the nonstationary regime Δk < Δksr the oscillatory nonlocal response function
implies that compression is inefficient unless the soliton order is very low.

(b) Competing cubic nonlinearities pose an upper limit Δk c [10, 11] beyond which
Neff < 1 always. Close to this limit detrimental cubic XPM effects are observed.

2. Effects limiting the compression for a given phase-mismatch value.

(a) The effective soliton order Neff = (N2
SHG−N2

Kerr)
1/2 controls in the weakly nonlocal

limit the compression factor fC = Tin/Δtopt = 4.7(Neff −0.86) [11].

(b) Nonlocal effects. In the stationary regime Δtopt is limited by the strength of the
nonlocal response function tb. In the nonstationary regime Δtopt is limited by the
characteristic time TR,SHG of the GVM-induced Raman-like perturbation.

(c) Propagation effects pertaining solely to the FW, such as higher-order dispersion, the
Raman effect (negligible in nonlinear crystals) and cubic self-steepening.

(d) Competing cubic nonlinearities necessitate large quadratic soliton orders NSHG,
which increases detrimental nonlocal effects such as the Raman-like perturbation.

The numerical simulations of Eqs. (1) were performed using a β -barium-borate crystal
(BBO) as the quadratic nonlinear medium. The phase mismatch was changed through angle-
tuning of the crystal in a type I SHG configuration (implying B = 2/3, see [11] for further
details), and we are interested in Δk > 0, for which GVD is normal and d 12 < 0 (so sa < 0).

#91405 - $15.00 USD Received 4 Jan 2008; revised 18 Feb 2008; accepted 22 Feb 2008; published 25 Feb 2008

(C) 2008 OSA 3 March 2008 / Vol. 16,  No. 5 / OPTICS EXPRESS  3282



Figure 3 summarizes simulations of pulse compression of a 200 fs FWHM pulse centered at
λ1 = 1064 nm: the FW pulse duration at the point of optimal compression Δt opt (dark circles)
is plotted as the phase mismatch Δk is sweeped. The strength of the cascaded quadratic non-
linearity N2

SHG ∝ Δk−1, while the Kerr nonlinearity remains unchanged. However, in the plot
we keep Neff = 8 fixed by adjusting the input intensity I in = 1

2 n1ε0cE 2
in [27]. This implies that

the scaling law [11] predicts equal compression everywhere (dotted orange line). While we do
observe such a compression in the regime around Δk = 50 mm−1 [this example is shown in
Fig. 1(a)-(b), and also in Fig. 4], away from this point the compression becomes sub-optimal.

Before discussing these results, we note that the nonlocal time scales plotted in Fig. 3(a) are
not those of Eq. (11); these only take into account up to second-order dispersion (dispersion
order md = 2), while in the numerical simulations the dispersion is calculated exactly from
the Sellmeier equations [11], and subsequently the SH dispersion is corrected in the SEWA
framework up to 30th order [11]. This poses a correction on the nonlocal time scales as well
as the transition to the nonstationary regime, which was calculated numerically: we replaced
the polynomial in the denominator of R̃ in Eq. (6) with D̂2,eff (evaluated in frequency domain).
The transition to the nonstationary regime is when a root-pair switches from being each others
complex conjugate to being purely real and nondegenerate. Then Ω a,b and ta,b can be extracted
from these roots. The transition to the stationary regime (13) is now simply found when t b

diverges. Fig. 3 shows for comparison also tb calculated with md = 2, i.e., using Eq. (11).
The degrading compressor performance observed for large Δk in Fig. 3(a) is caused by the

onset of XPM-effects. As Δk is increased the cascaded quadratic nonlinearity is reduced, so in
order to keep Neff = 8 the input intensity Iin must be increased, see Fig. 3(b). Eventually the
required intensity diverges because Δk approaches the so-called upper limit of the compression
window Δkc, beyond which Neff < 1 always [10, 11]. As Iin becomes large so does the input
beam fluence Φin = 2TinIin, and this makes XPM effects more pronounced; as shown in [11]
above a critical fluence of Φc = 33 mJ/cm2 the onset of compression in a BBO is not Neff,c = 1
– as one would expect from the NLS-like Eq. (3) – but can approximately be described by
the scaling law Neff,c = 1 + ΔNeff, with ΔNeff = Φin/[Φc(1 + Φc/Φin)] as the delay in onset.
The delay is caused by the XPM term creating an intensity dependent self-focusing phase-shift
in addition to the one already created by the Kerr SPM term; both are counteracting the self-
defocusing phase shift from the cascaded quadratic interaction. The immediate consequence
is that we can no longer expect the compression factor of fC = 33.5 predicted from Neff = 8;
instead we must use a corrected effective soliton number N corr

eff = Neff −ΔNeff [see Fig. 3(b)],
which for high fluences then will give a reduced compression performance. Figure 3(a) shows
Δtopt as predicted from the scaling laws for Neff = 8 (dotted orange line), together with the cor-
rected Δtcorr

opt as calculated using Ncorr
eff (solid orange line). As expected for high Δk values Δt corr

opt
starts to deviate from Δtopt. Importantly, it seems to describe very accurately the compression
performance observed numerically. An example of how the pulse looks like in this regime is
shown in Fig. 4 (Δk = 125 mm−1, blue curve). The compressed pulse is longer (18 fs FWHM)
and we also checked that it compresses later than what one would expect with N eff = 8. These
values correspond very well to what the reduced soliton number N corr

eff � 3 predicts through
the scaling laws. Thus, XPM strongly degrades compression when the beam fluence becomes
large. This is also confirmed by the simulations shown with open circles in Fig. 3(a), for which
XPM effects were turned off: only a weak degradation in compression is seen for high Δk.

For Δk = 43−50 mm−1 the limit to compression is determined by the strength of the nonlocal
response function. Close to the transition to the nonstationary regime t b becomes large, so the
nonlocal response R+ is very broad. Initially, however, the 200 fs FWHM input pulse sees only
a weakly nonlocal response. As the pulse compresses the nonlocal response becomes strongly
nonlocal, whereby the NLS-like model (3) reduces to a linear Schrödinger equation having a
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Fig. 4. Data from the numerical results in Fig. 3 for selected values of Δk: (a) |U1|2 at
z = zopt versus time, (b) the corresponding FW and (c) SH wavelength spectra. Only up
to λ = 3.5 μm is shown in (b) since this is the edge of the transparency window of BBO
[21]. (d) The wavelength of the red-shifted peaks in the nonstationary regime, comparing
numerical calculations (symbols) with the predictions of the nonlocal theory (lines).

potential defined by the response function [18,23,28–30]. The pulse cannot be narrower than the
width of this potential given by tb, which explains the behaviour observed for phase-mismatch
values just above Δksr. This has also been observed for spatial nonlocal solitons [18,23,28–30].

For Δk < 42 mm−1 the system is in the nonstationary regime and as Δk is reduced Δtopt in-
creases as Δk−1. The compression limit does therefore not follow t b, but instead follows the
characteristic Raman-like time TR,SHG = 2|d12|/Δk quite closely. Indeed some physical expla-
nation can be extracted from this parameter, since it namely represents the pulse duration, where
the GVM length LGVM = Δt/|d12| becomes shorter than the coherence length L coh = π/Δk. In-
tuitively it seems logical that the compressed pulse duration hit a limit when the GVM length
is equal to the coherence length: the cascaded nonlinear interaction can no longer build up the
phase shift because the GVM will remove the FW and SH from each other before even one cas-
caded cycle is complete. Interestingly, similar arguments to these were initially used to define
the nonstationary regime [14, 17], and it was already there clear that compression was limited
in the same way as shown here. These studies were, as mentioned before, carried out in the
nonstationary regime as defined by the nonlocal analysis, so the results corroborate each other.

To better understand the difference between the stationary and nonstationary regimes,
Fig. 4(a) shows examples of compressed pulses. In the stationary regime for Δk = 50 mm −1 a
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6.3 fs FWHM compressed pulse is observed as expected from the scaling laws. Approaching the
transition to the nonstationary regime (Δk = 43 mm−1) the pulse compression degrades to 10.6
fs FWHM, which (roughly) corresponds to the nonlocal time scale t b; thus, the potential-barrier
effect of the nonlocal response function is apparent here. Once inside the nonstationary regime,
the pulse not only becomes compressed poorly, but trailing oscillations are evident. The corre-
sponding FW and SH wavelength-spectra are shown in Fig. 4(b) and (c). For Δk = 50 mm −1

both the FW and SH spectra are very flat, except for a spectral FW peak and corresponding
spectral SH hole. As we explain below these peaks are actually dispersive waves. Closer to the
transition (Δk = 43 mm−1) the SH spectrum develops a peak because R̃+(Ω) here is a very
narrow Lorentzian. Inside the nonstationary regime a distinct red-shifted peak grows up in the
SH spectrum, which can be explained by the nonlocal theory since the spectral peak sits at the
frequency Ω+. In turn, close to the transition (Δk = 41 mm−1) the FW has a corresponding
spectral hole at ω1 +Ω+, while further from the transition (Δk = 30 mm−1) it becomes a spec-
tral peak. To confirm this, we show in Fig. 4(d) the red-shifted holes/peaks found numerically
versus Δk, with an impressive agreement with the nonlocal theory. This FW spectral hole/peak
is the main limitation to the pulse compression in the nonstationary regime.

The pronounced peaks around λ = 2.9 μm in the FW spectra in Fig. 4(b) are dispersive
waves. Such linear waves are phase matched to the compressed solitons if certain conditions
are fulfilled [31–33]: The dispersive wave is generated if the FW dispersion operator in the fre-

quency domain D̂1(Ω) = ∑∞
m=2 m!−1Ωmk(m)

1 changes sign, and for λ1 = 1.064 μm it becomes
negative beyond the dotted line in Fig. 4. Such dispersive waves have not been observed before
with cascaded quadratic nonlinearities, but their appearance further underlines the analogy be-
tween propagation in a medium with cascaded quadratic nonlinearities and in a medium with
cubic nonlinearities. Figure 4(b) indicates that the wavelength of the dispersive wave λ dw does
not change as Δk is varied. One explanation is that the FW dispersion is independent on the
crystal angle in type I SHG. Instead λdw may change strongly with the soliton frequency, but
since the soliton-frequency blue shifts observed in the simulations were quite small and sim-
ilar (around 30-40 THz) the peaks are observed at approximately the same wavelengths. The
solitons are blue shifted because Δk > 0 and sa < 0 and these shifts explain why the disper-
sive waves are slightly red-shifted compared to the dotted line; this is traditionally included in
the phase-matching condition as a nonlinear de-phasing term [33]. The dispersive waves can
also be noted in Fig. 1(b,d). They do not emerge before the pulse is compressed, because their
strength is related to the spectral strength of the soliton to which they are coupled [33].

What happens when the effective soliton order in the stationary regime is pushed to create
single-cycle pulses? In a previous study it was found that the GVM-induced Raman-like pertur-
bation beyond some optimal soliton order starts to dominate and makes the compressed pulse
asymmetric, while the peak intensity drops (Fig. 1 in Ref. [6], where Δk = 16 π/mm). These
results are confirmed in Fig. 5(a), showing the peak intensity of the compressed pulse versus
Neff for Δk = 60 mm−1. Beyond Neff = 8 the pulse compression deviates from the prediction
of the scaling law, even for the simulations including only up to third order dispersion (TOD,
i.e., dispersion order md = 3), or neglecting the competing Kerr nonlinearities. However, the
compression, shown in Fig. 5(b) as the compressed pulse duration Δt opt, improves even beyond
this point of maximum intensity. The explanation is that Δt opt = Tin/ fc in (b) is determined by
the compression factor fc alone, while the intensity in (a) is I1,opt/Iin = fcQc, where Qc is the
compressed pulse quality (the energy of the central spike relative to the input pulse energy).
Thus, the drop in intensity in Fig. 5(a) is caused by a drop in Q c. Around Neff = 17 the com-
pressed pulse is quite close to the single-cycle regime. The time profiles for this case are shown
In Fig. 5(c). The simulations without Kerr nonlinearities (so NSHG = Neff = 17) actually pre-
dict single-cycle compressed pulses, while turning on the Kerr nonlinearities the compressed
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Fig. 5. Results of pulse compression simulations as in Fig. 3, taking Δk = 60 mm−1 and
varying Neff. (a) and (b) show I1,opt/Iin and Δtopt when using exact dispersion (md = ∞) and
when including up to TOD (md = 3), as well as the same simulations without competing
Kerr nonlinearities. The orange curves are the predicted values from the scaling laws [11],
corrected for XPM. (c) and (d) show FW time and spectral profiles for Neff = 17.

pulses increase to 1.5 optical cycles. Notice also that the pulses with Kerr nonlinearities are
more asymmetric. This asymmetry is caused by the GVM-induced Raman-like perturbations
[1st term on the RHS of Eq. (17)] as pointed out in Ref. [6]. Since this effect stems from the
quadratic nonlinearities it must be stressed that they are also affecting the single-cycle pulses
obtained without Kerr nonlinearities. However, the difference is that there N SHG = 17 while
with Kerr nonlinearities NSHG = 22.9 must be chosen to have Neff = 17. Therefore the strength
of the Raman-like perturbation, which scales as N 2

SHG, is much stronger when including the
competing Kerr nonlinearities leading to a more asymmetric pulse. We also note that the simu-
lations with exact dispersion (no polynomial expansion, m d = ∞) have fast trailing oscillations,
which are absent for the TOD simulations. The FW spectra in Fig. 5(d) offer an explanation:
only with exact dispersion is there a dispersive wave appearing as a spectral peak around 3
μm. With TOD the spectrum is instead smooth because the phase-matching condition for the
dispersive wave is pushed far into the infrared.

Considering these results, a brief discussion on the effect on TOD in soliton compressors is
fruitful. In fiber soliton compressors the most detrimental effect on pulse compression is the in-
trapulse Raman scattering term, that comes from a non-instantaneous Kerr nonlinear response.
As mentioned before, this effect can be neglected in nonlinear crystals. Chan and Liu showed
that also TOD can severely distort the pulse when GVD is small [34], while for larger GVD the
TOD is less important for the pulse shape [35], and simply leads to a slowing down of the soli-
ton. In this context the TOD effect observed here, namely that the phase-matching wavelength
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of the dispersive wave is shifted, is completely different. We also remark that in our simulations

TOD is positive, and GVD is not small (k(2)
1 � 40 fs2/mm and k(2)

2 � 100 fs2/mm).
Summing up, the GVM-induced Raman-like distortions prevents efficient compression at

high soliton numbers (as previously found in Ref. [6]), and the competing cubic nonlinearities
aggravates this effect. In addition, the presence of a dispersive wave prevented soliton com-
pression to the single-cycle level. The dispersive wave disappears when only including up to
TOD because the dispersion is no longer accurate in the region where the dispersive wave is
observed, and this underlines the importance of including HOD in the numerics. An interesting
case to study would be when a large dispersion control is possible, such as with photonic crys-
tal fibers [36]. Thus, the dispersion could be engineered as to push the dispersive wave into the
far-infrared, allowing for further compression towards the single-cycle regime.

6. Conclusions

To summarize we have shown that the limits to compression in cascaded quadratic soliton com-
pressors can in most cases accurately be understood from a nonlocal model, which describes
the cascaded quadratic nonlinearity as a nonlocal Kerr-like self-phase modulation response.

In the stationary regime, where the nonlocal response is localized, one cannot compress
pulses beyond the width (strength) of the nonlocal response function. Away from the transi-
tion to the stationary regime this nonlocal strength may become weak enough to reach single-
cycle levels. When increasing the effective soliton order as to compress beyond single-cycle
duration, the numerical simulations indicated that competing Kerr nonlinear effects were pre-
venting single-cycle compressed pulses: Since the quadratic soliton number must be chosen
much larger than without Kerr nonlinearities, this increases detrimental effects such as the
GVM-induced Raman-like perturbation found using the nonlocal theory. Additionally it was
found that higher-order dispersion can also prevent the observation of single-cycle compressed
pulses. In particular, dispersive waves phase-matched to the compressed higher-order soliton
caused trailing oscillations on the compressed pulse, eventually impeding further compression
even at higher intensities.

In the nonstationary regime the nonlocal response function is oscillatory. This gives an addi-
tional oscillatory contribution to the convolution between the pulse and the nonlocal response
function, which causes trailing oscillations in the compressed pulse and severely degrades com-
pression. The SH spectrum was found to be strongly red-shifted to a wavelength accurately
predicted by the nonlocal theory. This spectral shift in turn induces a peak in the FW, which is
the main compression limitation in the nonstationary regime. The compression limit was found
to be the characteristic Raman-like response time of the cascaded process TR,SHG, roughly the
pulse duration for which the GVM length and the coherence length become identical.

Another compression limit is set by the material Kerr nonlinearity, which restricts compres-
sion to below a critical phase-mismatch parameter, and requires large soliton orders for success-
ful compression. Thus, higher-order effects (XPM, higher-order dispersion and self-steepening)
come into play and detrimental nonlocal effects are increased. The influence of the XPM terms
can be predicted in the nonlocal model by using a corrected (reduced) soliton number, which is
based on numerical studies on XPM-induced delays in the onset of compression [11].

The present analysis will serve as a useful tool for further experimental progress in soliton
compression using cascaded quadratic nonlinearities. We will now focus our attention to com-
pression in a BBO at λ1 = 800 nm, because GVM is much stronger than what was presented
here. Thus we expect the nonlocal analysis to provide more insight into this case, in particular
concerning the nonstationary regime, which is the dominating one at 800 nm.
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