145 research outputs found

    Phocid Seal Leptin: Tertiary Structure and Hydrophobic Receptor Binding Site Preservation during Distinct Leptin Gene Evolution

    Get PDF
    The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus

    Clarifying mammalian RISC assembly in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Argonaute, the core component of the RNA induced silencing complex (RISC), binds to mature miRNAs and regulates gene expression at transcriptional or post-transcriptional level. We recently reported that Argonaute 2 (Ago2) also assembles into complexes with miRNA precursors (pre-miRNAs). These Ago2:pre-miRNA complexes are catalytically active <it>in vitro </it>and constitute non-canonical RISCs.</p> <p>Results</p> <p>The use of pre-miRNAs as guides by Ago2 bypasses Dicer activity and complicates <it>in vitro </it>RISC reconstitution. In this work, we characterized Ago2:pre-miRNA complexes and identified RNAs that are targeted by miRNAs but not their corresponding pre-miRNAs. Using these target RNAs we were able to recapitulate <it>in vitro </it>pre-miRNA processing and canonical RISC loading, and define the minimal factors required for these processes.</p> <p>Conclusions</p> <p>Our results indicate that Ago2 and Dicer are sufficient for processing and loading of miRNAs into RISC. Furthermore, our studies suggest that Ago2 binds primarily to the 5'- and alternatively, to the 3'-end of select pre-miRNAs.</p

    Late weaning and maternal closeness, associated with advanced motor and visual maturation, reinforce autonomy in healthy, 2-year-old children.

    Get PDF
    We studied neurodevelopmental outcomes and behaviours in healthy 2-year old children (N = 1306) from Brazil, India, Italy, Kenya and the UK participating in the INTERGROWTH-21st Project. There was a positive independent relationship of duration of exclusive breastfeeding (EBF) and age at weaning with gross motor development, vision and autonomic physical activities, most evident if children were exclusively breastfed for ≥7 months or weaned at ≥7 months. There was no association with cognition, language or behaviour. Children exclusively breastfed from birth to 6 months had, in a dose-effect pattern, adjusting for confounding factors, higher scores for "emotional reactivity". The positive effect of EBF and age at weaning on gross motor, running and climbing scores was strongest among children with the highest scores in maternal closeness proxy indicators. EBF, late weaning and maternal closeness, associated with advanced motor and vision maturation, independently influence autonomous behaviours in healthy children

    Mitigation of phosphorus, sediment and Escherichia coli losses in runoff from a dairy farm roadway

    Get PDF
    peer reviewedDairy cow deposits on farm roadways are a potential source of contaminants entering streams. Phosphorus (P), suspended sediment (SS) and Escherichia coli (E. coli) loads in 18 runoff events over 12 mo from two-halves of a section of dairy farm roadway that spilt into an adjacent P-impacted stream were measured. The runoff from one half was untreated while the other half was directed through a filter of steel melter slag [termed aluminium chlorohydrate (ACH)-altered slag] sprayed with 1% ACH solution to improve P sorption capacity. An uncertainty analysis was conducted to ascertain potential loads of P lost from roadways considering variation in deposit weight, number and P content. Over the monitoring period, the total load decreased P (92%), SS (98%) and E. coli (76%) from the ACHaltered slag roadway compared to the control. However, uncertainty analysis showed that the amount of dung-P deposited on the roadway could be 10-fold greater

    MicroRNA networks direct neuronal development and plasticity

    Get PDF
    MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF
    corecore