1,706 research outputs found

    Effect of iodine on early stage thyroid autonomy

    Get PDF
    AbstractThyroid autonomy is a frequent cause of thyrotoxicosis in regions with iodine deficiency. Epidemiological data suggest that iodide may influence the course of pre-existing thyroid autonomy.Making use of FRTL-5 cells stably expressing a constitutively activating TSH receptor mutation as an in vitro model of thyroid autonomy, we investigated the impact of iodide on proliferation, function and changes in global gene expression.We demonstrate that iodine inhibits growth in TSHR WT and L629F mutant FRTL-5 cells and downregulates e.g. protocadherin cluster (Pcdha1ā€“13) and thyroid responsive element (Thrsp). In addition functional genes e.g. iodotyrosine deiodinase (iyd) and oncogen junB are upregulated, while sodium-iodide-symporter (Nis) and thyroid peroxidase (Tpo) are downregulated by iodide.Iodide tunes down the biological activity of autonomous thyrocytes and may thus be of therapeutic benefit not only to prevent the occurrence of somatic TSHR mutations, causing thyroid autonomy, but also to slow down the development of clinically relevant disease

    DASYPOGALACTONE, A NEW CHIRALIC C3-SYMMETRIC MACROLACTONE FROM LICHEN USNEA DASYPOGA ROHL.

    Get PDF
    Medicinal plants spread out in Indonesia, however only a part of them have been clinically investigated that exhibited therapeutic effecs. This research was to isolate a new compounds in Usnea dasypoga. A new twentyfour-membered macrolactone composed of three units of unknown fatty acid (2R*,3R*,4S*,7S* or 2S* 3S* 4R*, 7R*)-3,7-dihydroxy-2,4-dimethyloctanoic acid forming a C3-symmetrical lactide was isolated from Indonesian lichen Usnea dasypoga Rohl. The result shown that those compound had been confirmed with the spectroscopic data.Keywords: Natural products isolation, three lactide, liche

    The trophoblast clock controls transport across placenta in mice

    Get PDF
    In mammals, 24-h rhythms of physiology and behavior are organized by a body-wide network of clock genes and proteins. Despite the well-known function of the adult circadian system, the roles of maternal, fetal and placental clocks during pregnancy are poorly defined. In the mature mouse placenta, the labyrinth zone (LZ) is of fetal origin and key for selective nutrient and waste exchange. Recently, clock gene expression has been detected in LZ and other fetal tissues; however, there is no evidence of a placental function controlled by the LZ clock. Here, we demonstrate that specifically the trophoblast layer of the LZ harbors an already functional clock by late gestation, able to regulate in a circadian manner the expression and activity of the xenobiotic efflux pump, ATP-binding cassette sub-family B member 1 (ABCB1), likely gating the fetal exposure to drugs from the maternal circulation to certain times of the day. As more than 300 endogenous and exogenous compounds are substrates of ABCB1, our results might have implications in choosing the maternal treatment time when aiming either maximal/minimal drug availability to the fetus/mother.Fil: Demarez, CĆ©cile. UniversitƤt Zu LĆ¼beck; AlemaniaFil: de Assis, Leonardo Vinicius Monteiro. UniversitƤt Zu LĆ¼beck; AlemaniaFil: Krohn, Markus. UniversitƤt Zu LĆ¼beck; AlemaniaFil: Ramella, Nahuel. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas. Centro CientĆ­fico TecnolĆ³gico Conicet - La Plata. Instituto de Investigaciones BioquĆ­micas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias MĆ©dicas. Instituto de Investigaciones BioquĆ­micas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Schwaninger, Markus. UniversitƤt Zu LĆ¼beck; AlemaniaFil: Oster, Henrik. UniversitƤt Zu LĆ¼beck; AlemaniaFil: Astiz, Mariana. UniversitƤt Zu LĆ¼beck; Alemania. Consejo Nacional de Investigaciones CientĆ­ficas y TĆ©cnicas; Argentin

    Adhesion GPCR GPR56 Expression Profiling in Human Tissues

    Get PDF
    Despite the immense functional relevance of GPR56 (gene ADGRG1) in highly diverse (patho)physiological processes such as tumorigenesis, immune regulation, and brain development, little is known about its exact tissue localization. Here, we validated antibodies for GPR56-specific binding using cells with tagged GPR56 or eliminated ADGRG1 in immunotechniques. Using the most suitable antibody, we then established the human GPR56 tissue expression profile. Overall, ADGRG1 RNA-sequencing data of human tissues and GPR56 protein expression correlate very well. In the adult brain especially, microglia are GPR56-positive. Outside the central nervous system, GPR56 is frequently expressed in cuboidal or highly prismatic secreting epithelia. High ADGRG1 mRNA, present in the thyroid, kidney, and placenta is related to elevated GPR56 in thyrocytes, kidney tubules, and the syncytiotrophoblast, respectively. GPR56 often appears in association with secreted proteins such as pepsinogen A in gastric chief cells and insulin in islet Ī²-cells. In summary, GPR56 shows a broad, not cell-type restricted expression in humans

    A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping

    Get PDF
    Selection of novel molecular markers is an important goal of cancer genomics studies. The aim of our analysis was to apply the multivariate bioinformatical tools to rank the genes ā€“ potential markers of papillary thyroid cancer (PTC) according to their diagnostic usefulness. We also assessed the accuracy of benign/malignant classification, based on gene expression profiling, for PTC. We analyzed a 180-array dataset (90 HG-U95A and 90 HG-U133A oligonucleotide arrays), which included a collection of 57 PTCs, 61 benign thyroid tumors, and 62 apparently normal tissues. Gene selection was carried out by the support vector machines method with bootstrapping, which allowed us 1) ranking the genes that were most important for classification quality and appeared most frequently in the classifiers (bootstrap-based feature ranking, BBFR); 2) ranking the samples, and thus detecting cases that were most difficult to classify (bootstrap-based outlier detection). The accuracy of PTC diagnosis was 98.5% for a 20-gene classifier, its 95% confidence interval (CI) was 95.9ā€“100%, with the lower limit of CI exceeding 95% already for five genes. Only 5 of 180 samples (2.8%) were misclassified in more than 10% of bootstrap iterations. We specified 43 genes which are most suitable as molecular markers of PTC, among them some well-known PTC markers (MET, fibronectin 1, dipeptidylpeptidase 4, or adenosine A1 receptor) and potential new ones (UDP-galactose-4-epimerase, cadherin 16, gap junction protein 3, sushi, nidogen, and EGF-like domains 1, inhibitor of DNA binding 3, RUNX1, leiomodin 1, F-box protein 9, and tripartite motif-containing 58). The highest ranking gene, metallophosphoesterase domain-containing protein 2, achieved 96.7% of the maximum BBFR score

    The Human Blood Transcriptome in a Large Population Cohort and Its Relation to Aging and Health

    Get PDF
    Background: The blood transcriptome is expected to provide a detailed picture of an organismā€™s physiological state with potential outcomes for applications in medical diagnostics and molecular and epidemiological research.We here present the analysis of blood specimens of 3,388 adult individuals, together with phenotype characteristics such as disease history, medication status, lifestyle factors, and body mass index (BMI). The size and heterogeneity of this data challenges analytics in terms of dimension reduction, knowledge mining, feature extraction, and data integration. Methods: Self-organizing maps (SOM)-machine learning was applied to study transcriptional states on a population-wide scale. This method permits a detailed description and visualization of the molecular heterogeneity of transcriptomes and of their association with different phenotypic features. Results: The diversity of transcriptomes is described by personalized SOM-portraits, which specify the samples in terms of modules of co-expressed genes of different functional context. We identified two major blood transcriptome types where type 1 was found more in men, the elderly, and overweight people and it upregulated genes associated with inflammation and increased heme metabolism, while type 2 was predominantly found in women, younger, and normal weight participants and it was associated with activated immune responses, transcriptional, ribosomal, mitochondrial, and telomere-maintenance cell-functions. We find a striking overlap of signatures shared by multiple diseases, aging, and obesity driven by an underlying common pattern, which was associated with the immune response and the increase of inflammatory processes. Conclusions: Machine learning applications for large and heterogeneous omics data provide a holistic view on the diversity of the human blood transcriptome. It provides a tool for comparative analyses of transcriptional signatures and of associated phenotypes in population studies and medical applications

    Analysis options for high-throughput sequencing in miRNA expression profiling

    Get PDF
    Background: Recently high-throughput sequencing (HTS) using next generation sequencing techniques became useful in digital gene expression profiling. Our study introduces analysis options for HTS data based on mapping to miRBase or counting and grouping of identical sequence reads. Those approaches allow a hypothesis free detection of miRNA differential expression. Methods: We compare our results to microarray and qPCR data from one set of RNA samples. We use Illumina platforms for microarray analysis and miRNA sequencing of 20 samples from benign follicular thyroid adenoma and malignant follicular thyroid carcinoma. Furthermore, we use three strategies for HTS data analysis to evaluate miRNA biomarkers for malignant versus benign follicular thyroid tumors. Results: High correlation of qPCR and HTS data was observed for the proposed analysis methods. However, qPCR is limited in the differential detection of miRNA isoforms. Moreover, we illustrate a much broader dynamic range of HTS compared to microarrays for small RNA studies. Finally, our data confirm hsa-miR-197-3p, hsa-miR-221-3p, hsa-miR-222-3p and both hsa-miR-144-3p and hsa-miR-144-5p as potential follicular thyroid cancer biomarkers. Conclusions: Compared to microarrays HTS provides a global profile of miRNA expression with higher specificity and in more detail. Summarizing of HTS reads as isoform groups (analysis pipeline B) or according to functional criteria (seed analysis pipeline C), which better correlates to results of qPCR are promising new options for HTS analysis. Finally, data opens future miRNA research perspectives for HTS and indicates that qPCR might be limited in validating HTS data in detail.:Background; Methods; Results; Discussion; Conclusion

    The Full Event Interpretation -- An exclusive tagging algorithm for the Belle II experiment

    Full text link
    The Full Event Interpretation is presented: a new exclusive tagging algorithm used by the high-energy physics experiment Belle II. The experimental setup of Belle II allows the precise measurement of otherwise inaccessible BB meson decay-modes. The Full Event Interpretation algorithm enables many of these measurements. The algorithm relies on machine learning to automatically identify plausible BB meson decay chains based on the data recorded by the detector. Compared to similar algorithms employed by previous experiments, the Full Event Interpretation provides a greater efficiency, yielding a larger effective sample size usable in the measurement.Comment: 11 pages, 7 figures, 1 tabl
    • ā€¦
    corecore