2,244 research outputs found
Myopic Loss Aversion: Information Feedback vs. Investment Flexibility
We experimentally disentangle the effect of information feedback from the effect of investment flexibility on the investment behavior of a myopically loss averse investor.Our findings show that varying the information condition alone suffices to induce behavior that is in line with the hypothesis of Myopic Loss Aversion.information;investment
Controlled Contact to a C60 Molecule
The conductance of C60 on Cu(100) is investigated with a low-temperature
scanning tunneling microscope. At the transition from tunneling to the contact
regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises
rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is
observed upon further decreasing the distance between the instrument's tip and
the surface. Ab-initio calculations within density functional theory and
non-equilibrium Green's function techniques explain the experimental data in
terms of the conductance of an essentially undeformed C60. From a detailed
analysis of the crossover from tunneling to contact we conclude that the
conductance in this region is strongly affected by structural fluctuations
which modulate the tip-molecule distance.Comment: 4 pages, 3 figure
The agrin gene codes for a family of basal lamina proteins that differ in function and distribution
We isolated two cDNAs that encode isoforms of agrin, the basal lamina protein that mediates the motor neuron-induced aggregation of acetylcholine receptors on muscle fibers at the neuromuscular junction. Both proteins are the result of alternative splicing of the product of the agrin gene, but, unlike agrin, they are inactive in standard acetylcholine receptor aggregation assays. They lack one (agrin-related protein 1) or two (agrin-related protein 2) regions in agrin that are required for its activity. Expression studies provide evidence that both proteins are present in the nervous system and muscle and that, in muscle, myofibers and Schwann cells synthesize the agrin-related proteins while the axon terminals of motor neurons are the sole source of agrin
Application of Bragg superlattice filters in low temperature microrefrigerators
We propose to use the Bragg interference filter technology for fabrication of
microrefrigerators. The idea of using superconductor-insulator-superconductor
(SIS) or normal metal-insulator-superconductor (SIN) tunnel junctions as
cooling elements in micro-refrigerators is attractive because of the absence of
(micro-) refrigerators operating below 150 K. The microscopic approach to
cooling is based on the "phonon deficit effect" in nonequilibrium regime of
tunnel junctions. This effect can be improved by use of phonon filters placed
between the tunnel junction and the heath-bath. Such a filter can be the Bragg
interference superlattice (Bragg's grating) which is well studied for problems
of optical communications. Bragg interference filters are used also for
detection of phonons emitted by tunnel junctions. To enhance the refrigeration
process one needs filters with very broad spectral transmission properties or a
large transmission band with one or two narrow stop bands. The type of the
needed filter will depend on the types of the used tunnel junction.
Corresponding discussion is presented.Comment: 9 pages, International Conference of Applied Photonic Technologies
(ICAPT), Quebec, 200
Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation
Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging
As a relatively new class of materials, single-chain polymer nanoparticles (SCNPs) just entered the field of (biomedical) applications, with recent advances in polymer science enabling the formation of bio-inspired nanosized architectures. Exclusive intramolecular collapse of individual polymer chains results in individual nanoparticles. With sizes an order of magnitude smaller than conventional polymer nanoparticles, SCNPs are in the size regime of many proteins and viruses (1-20 nm). Multifaceted syntheses and design strategies give access to a wide set of highly modular SCNP materials. This review describes how SCNPs have been rendered water-soluble and highlights ongoing research efforts towards biocompatible SCNPs with tunable properties for controlled drug delivery, targeted imaging and protein mimicry
Transport and nonequilibrium phase transitions in polygonal urn models
We study the deterministic dynamics of N point particles moving at a constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback control on the particles, inverting the horizontal component of their velocities when their number in the channel exceeds a fixed threshold. Such a bounce-back mechanism is non-dissipative: it preserves volumes in phase space. An additional passive channel closes the billiard table forming a circuit in which a stationary current may flow. Under specific constraints on the geometry and on the initial conditions, the large N limit allows nonequilibrium phase transitions between homogeneous and inhomogeneous phases. The role of ergodicity in making a probabilistic theory applicable is discussed for both rational and irrational urns. The theoretical predictions are compared with the numerical simulation results. Connections with the dynamics of feedback-controlled biological systems are highlighted
Fractal-like hierarchical organization of bone begins at the nanoscale
INTRODUCTION: The components of bone assemble hierarchically to provide stiffness and toughness. Deciphering the specific organization and relationship between bone’s principal components—mineral and collagen—requires answers to three main questions: whether the association of the mineral phase with collagen follows an intrafibrillar or extrafibrillar pattern, whether the morphology of the mineral building blocks is needle- or platelet-shaped, and how the mineral phase maintains continuity across an extensive network of cross-linked collagen fibrils. To address these questions, a nanoscale level of three-dimensional (3D) structural characterization is essential and has now been performed. RATIONALE: Because bone has multiple levels of 3D structural hierarchy, 2D imaging methods that do not detail the structural context of a sample are prone to interpretation bias. Site-specific focused ion beam preparation of lamellar bone with known orientation of the analyzed sample regions allowed us to obtain imaging data by 2D high-resolution transmission electron microscopy (HRTEM) and to identify individual crystal orientations. We studied higher-level bone mineral organization within the extracellular matrix by means of scanning TEM (STEM) tomography imaging and 3D reconstruction, as well as electron diffraction to determine crystal morphology and orientation patterns. Tomographic data allowed 3D visualization of the mineral phase as individual crystallites and/or aggregates that were correlated with atomic-resolution TEM images and corresponding diffraction patterns. Integration of STEM tomography with HRTEM and crystallographic data resulted in a model of 3D mineral morphology and its association with the organic matrix. RESULTS: To visualize and characterize the crystallites within the extracellular matrix, we recorded imaging data of the bone mineral in two orthogonal projections with respect to the arrays of mineralized collagen fibrils. Three motifs of mineral organization were observed: “filamentous” (longitudinal or in-plane) and “lacy” (out-of-plane) motifs, which have been reported previously, and a third “rosette” motif comprising hexagonal crystals. Tomographic reconstructions showed that these three motifs were projections of the same 3D assembly. Our data revealed that needle-shaped, curved nanocrystals merge laterally to form platelets, which further organize into stacks of roughly parallel platelets separated by gaps of approximately 2 nanometers. These stacks of platelets, single platelets, and single acicular crystals coalesce into larger polycrystalline aggregates exceeding the lateral dimensions of the collagen fibrils, and the aggregates span adjacent fibrils as continuous, cross-fibrillar mineralization. CONCLUSION: Our findings can be described by a model of mineral and collagen assembly in which the mineral organization is hierarchical at the nanoscale. First, the data reveal that mineral particles are neither exclusively needle- nor platelet-shaped, but indeed are a combination of both, because curved acicular elements merge laterally to form slightly twisted plates. This can only be detected when the organic extracellular matrix is preserved in the sample. Second, the mineral particles are neither exclusively intrafibrillar nor extrafibrillar, but rather form a continuous cross-fibrillar phase where curved and merging crystals splay beyond the typical dimensions of a single collagen fibril. Third, in the organization of the mineral phase of bone, a helical pattern can be identified. This 3D observation, integrated with previous studies of bone hierarchy and structure, illustrates that bone (as a material, as a tissue, and as an organ) follows a fractal-like organization that is self-affine. The assembly of bone components into nested, helix-like patterns helps to explain the paradoxical combination of enhanced stiffness and toughness of bone and results in an expansion of the previously known hierarchical structure of bone to at least 12 levels
- …