237 research outputs found

    Genome Analyses of the New Model Protist \u3ci\u3eEuplotes vannus\u3c/i\u3e Focusing on Genome Rearrangement and Resistance to Environmental Stressors

    Get PDF
    As a model organism for studies of cell and environmental biology, the free-living and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), “gene-sized” chromosomes, stop codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to environmental stressors. However, the molecular mechanisms that account for these remarkable traits remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronuclear (MAC; i.e., somatic) and partial micronuclear (MIC; i.e., germline) genome sequences for E. vannus, and transcriptome profiling data under varying conditions. The results demonstrate that: (a) the MAC genome contains more than 25,000 complete “gene-sized” nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; (b) although there is a high frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript abundance as a result of PRF in this species as has been reported for other euplotids; (c) the sequence motif 5′-TA-3′ is conserved at nearly all internally-eliminated sequence (IES) boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and retained in the MAC genome; (d) by profiling the weighted correlation network of genes in the MAC under different environmental stressors, including nutrient scarcity, extreme temperature, salinity and the presence of ammonia, we identified gene clusters that respond to these external physical or chemical stimulations, and (e) we observed a dramatic increase in HSP70 gene transcription under salinity and chemical stresses but surprisingly, not under temperature changes; we link this temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory regions. Together with the genome resources generated in this study, which are available online at Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence for understanding the unique biology of highly adaptable microorganisms

    Structure and toxicity of AZA-59, an azaspiracid shellfish poisoning toxin produced by Azadinium poporum (Dinophyceae)

    Get PDF
    To date, the putative shellfish toxin azaspiracid 59 (AZA-59) produced by Azadinium poporum (Dinophyceae) has been the only AZA found in isolates from the Pacific Northwest coast of the USA (Northeast Pacific Ocean). Anecdotal reports of sporadic diarrhetic shellfish poisoning-like illness, with the absence of DSP toxin or Vibrio contamination, led to efforts to look for other potential toxins, such as AZAs, in water and shellfish from the region. A. poporum was found in Puget Sound and the outer coast of Washington State, USA, and a novel AZA (putative AZA-59) was detected in low quantities in SPATT resins and shellfish. Here, an A. poporum strain from Puget Sound was mass-cultured and AZA-59 was subsequently purified and structurally characterized. In vitro cytotoxicity of AZA-59 towards Jurkat T lymphocytes and acute intraperitoneal toxicity in mice in comparison to AZA-1 allowed the derivation of a provisional toxicity equivalency factor of 0.8 for AZA-59. Quantification of AZA-59 using ELISA and LC-MS/MS yielded reasonable quantitative results when AZA-1 was used as an external reference standard. This study assesses the toxic potency of AZA-59 and will inform guidelines for its potential monitoring in case of increasing toxin levels in edible shellfish

    Production of extracts with anaesthetic activity from the culture of Heterosigma akashiwo in pilot-scale photobioreactors

    Get PDF
    The shear-sensitive microalga Heterosigma akashiwo is known to produce brevetoxin-like compounds that are active in voltage-dependent sodium channels. In this work, we present a study on the production of anaesthetic extracts from H. akashiwo biomass obtained in low-shear bioreactors at different growth phases. The photobioreactors (PBRs) used had specific configurations and were operated in such a way as to avoid cellular damage by hydrodynamic stress. Cultures were developed in small static-control flasks and PBRs with volumes ranging from 1.5 L to 200 L. The bioactivity of the produced extracts was assessed in vitro (Neuro-2a cell-based assay) and in vivo (Zebra fish model). Bioactivity depended slightly on the growth phase and culture system, with greater toxicity with the Neuro-2a model when stationary-phase extracts were used. Interestingly, extracts were not cytotoxic against other human cell lines. Steady production of anaesthetic bioactives was observed. In vivo anaesthetic efficacy, assessed with the Zebra fish model, was similar to that of commercial products, and without any observed mortality at 24-h post exposure

    Sympatric occurrence of two Azadinium poporum ribotypes in the Eastern Mediterranean Sea

    Get PDF
    The marine dinoflagellate Azadinium poporum produce azaspiracids (AZA) and has been recorded widely in the world. However, information on its biogeography is still limited, especially in view of the fact that A. poporum comprises several genetically differentiated groups. A total of 18 strains of A. poporum were obtained from the Eastern Mediterranean area by incubating surface sediment collected from Ionian Sea of Greece. The morphology of these strains was examined with light microscopy and scanning electron microscopy. Small subunit ribosomal DNA (SSU rDNA), large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences were obtained from all cultured strains. Molecular phylogeny based on concatenated SSU, LSU and ITS sequences confirmed three ribotypes within A. poporum and revealed two subclades within ribotypes A and C. Greek strains of A. poporum ribotype A were nested within ribotype A2 together with strains from Western Mediterranean Sea and French Atlantic, and Greek strains of A. poporum ribotype C were nested within ribotype C2 together with a strain from the Gulf of Mexico. Growth experiments on four selected strains revealed that ribotypes A and C from Greece differed in their growth at higher temperatures, indicating that they are physiologically differentiated. Azaspiracid profiles were analyzed for 15 cultured A. poporum strains using LCMS/MS and demonstrate that the A. poporum ribotype A from Greece produce low level or no AZA and A. poporum ribotype C from Greece produces predominantly AZA-40 (9.6–30.2 fg cell−1) followed by AZA-2 (2.1–2.6 fg cell−1). The first record of AZA-40 producing A. poporum from the Mediterranean suggests that this species is a potential source for azaspiracid contaminations in shellfish from the Eastern Mediterranean Sea

    Using Automated Glycan Assembly (AGA) for the Practical Synthesis of Heparan Sulfate Oligosaccharide Precursors

    Get PDF
    Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeer™, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography

    Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration

    Get PDF
    Defects in biogenesis or function(s) of primary cilia are associated with numerous inherited disorders (called ciliopathies) that may include retinal degeneration phenotype. The cilia-expressed gene RPGR (retinitis pigmentosa GTPase regulator) is mutated in patients with X-linked retinitis pigmentosa (XLRP) and encodes multiple protein isoforms with a common N-terminal domain homologous to regulator of chromosome condensation 1 (RCC1), a guanine nucleotide exchange factor (GEF) for Ran GTPase. RPGR interacts with several ciliopathy proteins, such as RPGRIP1L and CEP290; however, its physiological role in cilia-associated functions has not been delineated. Here, we report that RPGR interacts with the small GTPase RAB8A, which participates in cilia biogenesis and maintenance. We show that RPGR primarily associates with the GDP-bound form of RAB8A and stimulates GDP/GTP nucleotide exchange. Disease-causing mutations in RPGR diminish its interaction with RAB8A and reduce the GEF activity. Depletion of RPGR in hTERT-RPE1 cells interferes with ciliary localization of RAB8A and results in shorter primary cilia. Our data suggest that RPGR modulates intracellular localization and function of RAB8A. We propose that perturbation of RPGR–RAB8A interaction, at least in part, underlies the pathogenesis of photoreceptor degeneration in XLRP caused by RPGR mutations

    Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin

    Get PDF
    Activation of the endothelium is a pivotal first step for leukocyte migration into the diseased brain. Consequently, imaging this activation process is highly desirable. We synthesized carbohydrate-functionalized magnetic nanoparticles that bind specifically to the endothelial transmembrane inflammatory proteins E and P selectin. Magnetic resonance imaging revealed that the targeted nanoparticles accumulated in the brain vasculature following acute administration into a clinically relevant animal model of stroke, though increases in selectin expression were observed in both brain hemispheres. Nonfunctionalized naked particles also appear to be a plausible agent to target the ischemic vasculature. The importance of these findings is discussed regarding the potential for translation into the clinic

    Plankton Multiproxy Analyses in the Northern Patagonian Shelf, Argentina: Community Structure, Phycotoxins, and Characterization of Toxic Alexandrium Strains

    Get PDF
    The extensive Argentine continental shelf supports high plankton productivity and fish catches. In particular, El Rincón coastal area and the adjacent shelf fronts (38.5–42°S, 58.5–62°W) comprise diverse habitats and hold species of economic and ecological value. So far, studies of the microbial community present at the base of the food web remain scarce. Here, we describe the late winter plankton (5–200 μm) structure in terms of abundance, biomass, species composition, functional groups, and phycotoxin profiles in surface waters of El Rincón in September 2015. Diatoms are the most abundant and the largest contributors to carbon biomass at most stations. They dominated the coastal and inner-shelf (depths <50 m), while dinoflagellates and small flagellates (<15 μm) dominated offshore at the middle-shelf waters (depth ∼100 m). In addition, large (>20 μm) heterotrophic protists such as various ciliates and dinoflagellates species were more abundant offshore. Scanning of phycotoxins disclosed that paralytic shellfish poisoning (PSP) toxins were dominated by gonyautoxins-1/4 (GTX1/4), whereas lipophilic toxins were detected in low abundance, for example, domoic acid (DA). However, a bloom of Pseudo-nitzschia spp. (up to 3.6 × 105 cells L-1) was detected at inner-shelf stations. Pectenotoxin-2 (PTX-2) and 13-desmethyl spirolide C (SPX-1) were the most abundant in the field. The PTX-2 co-occurred with Dinophysis spp., mainly D. tripos, while SPX-1 dominated at middle-shelf stations, where cells of Alexandrium catenella (1 strain) and A. ostenfeldii (3 strains) were isolated. The quantitative PSP profiles of the Alexandrium strains differed significantly from the in situ profiles. Moreover, the three A. ostenfeldii strains produced PSP and additionally, five novel spirolides. Phylogenetic analyses of these newly isolated strains from the South Atlantic revealed a new ribotype group, suggesting a biogeographical distinction in the population. The plankton survey presented here contributes baseline knowledge to evaluate potential ecosystem changes and track the global distribution of toxigenic species

    A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense

    Get PDF
    Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community
    corecore