15 research outputs found

    Fungus Metarhizium robertsii and neurotoxic insecticide affect gut immunity and microbiota in Colorado potato beetles

    Get PDF
    Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut

    Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda: Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp.

    Get PDF
    The common cat tapeworm Hydatigera taeniaeformis is a complex of three morphologically cryptic entities, which can be differentiated genetically. To clarify the biogeography and the host spectrum of the cryptic lineages, 150 specimens of H. taeniaeformis in various definitive and intermediate hosts from Eurasia, Africa and Australia were identified with DNA barcoding using partial mitochondrial cytochrome c oxidase subunit 1 gene sequences and compared with previously published data. Additional phylogenetic analyses of selected isolates were performed using nuclear DNA and mitochondrial genome sequences. Based on molecular data and morphological analysis, Hydatigera kamiyai n. sp. Iwaki is proposed for a cryptic lineage, which is predominantly northern Eurasian and uses mainly arvicoline rodents (voles) and mice of the genus Apodemus as intermediate hosts. Hydatigera taeniaeformis sensu stricto (s.s.) is restricted to murine rodents (rats and mice) as intermediate hosts. It probably originates from Asia but has spread worldwide. Despite remarkable genetic divergence between H. taeniaeformis s.s. and H. kamiyai, interspecific morphological differences are evident only in dimensions of rostellar hooks. The third cryptic lineage is closely related to H. kamiyai, but its taxonomic status remains unresolved due to limited morphological, molecular, biogeographical and ecological data. This Hydatigera sp. is confined to the Mediterranean and its intermediate hosts are unknown. Further studies are needed to classify Hydatigera sp. either as a distinct species or a variant of H. kamiyai. According to previously published limited data, all three entities occur in the Americas, probably due to human-mediated introductions

    Hot Consolidation of Titanium Powders

    No full text
    A novel method of the hot consolidation metal powders with shear deformation is proposed. The powders were encapsulated into tight containers and compacted after short-term heating in a furnace preheated to 900 °C. The method prevents powder oxidation, peripheral spalling and ensures the removal of the oxide films from the powder surfaces. Commercial titanium powders of different dispersivities and impurity concentrations were hot-compacted. The microstructure, hardness and bending strength of the compacts were investigated. The compacts from fine PTOM-1 powder, containing 0.32% of hydrogen, reveal the greatest values of the hardness and bending strength. Additional annealing results in 60% increase in the bending strength

    A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of <i>Galleria mellonella</i> and Causes Its Resistance to <i>Bacillus thuringiensis</i>

    No full text
    Environmental pollution with antibiotics can cause antibiotic resistance in microorganisms, including the intestinal microbiota of various insects. The effects of low-dose aminoglycoside antibiotic (amikacin) on the resident gut microbiota of Galleria mellonella, its digestion, its physiological parameters, and the resistance of this species to bacteria Bacillus thuringiensis were investigated. Here, 16S rDNA analysis revealed that the number of non-dominant Enterococcus mundtii bacteria in the eighteenth generation of the wax moth treated with amikacin was increased 73 fold compared to E. faecalis, the dominant bacteria in the native line of the wax moth. These changes were accompanied by increased activity of acidic protease and glutathione-S-transferase in the midgut tissues of larvae. Ultra-thin section electron microscopy detected no changes in the structure of the midgut tissues. In addition, reduced pupa weight and resistance of larvae to B. thuringiensis were observed in the eighteenth generation of the wax moth reared on a diet with amikacin. We suggest that long-term cultivation of wax moth larvae on an artificial diet with an antibiotic leads to its adaptation due to changes in both the gut microbiota community and the physiological state of the insect organism

    Geographic distribution and phylogeny of soricine shrew-borne seewis virus and Altai virus in Russia

    Get PDF
    The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian common shrew (Sorex araneus), tundra shrew (Sorex tundrensis) and Siberian large-toothed shrew (Sorex daphaenodon), suggesting host sharing. In addition, genetic variants of SWSV, previously named Artybash virus (ARTV) and Amga virus, have been detected in the Laxmann’s shrew (Sorex caecutiens). Here, we describe the geographic distribution and phylogeny of SWSV and Altai virus (ALTV) in Asian Russia. The complete genomic sequence analysis showed that ALTV, also harbored by the Eurasian common shrew, is a new hantavirus species, distantly related to SWSV. Moreover, Lena River virus (LENV) appears to be a distinct hantavirus species, harbored by Laxmann’s shrews and flat-skulled shrews (Sorex roboratus) in Eastern Siberia and fareastern Russia. Another ALTV-related virus, which is more closely related to Camp Ripley virus from the United States, has been identified in the Eurasian least shrew (Sorex minutissimus) from far-eastern Russia. Two highly divergent viruses, ALTV and SWSV co-circulate among common shrews in Western Siberia, while LENV and the ARTV variant of SWSV co-circulate among Laxmann’s shrews in Eastern Siberia and far-eastern Russia. ALTV and ALTV-related viruses appear to belong to the Mobatvirus genus, while SWSV is a member of the Orthohantavirus genus. These findings suggest that ALTV and ALTV-related hantaviruses might have emerged from ancient cross-species transmission with subsequent diversification within Sorex shrews in Eurasia

    Molecular characterization of Ctenotaenia marmotae (Frölich, 1802) Railliet, 1893 (Cyclophyllidea: Anoplocephalidae) parasitizing rodents of the genus Marmota and Spermophilus from Eurasia

    No full text
    Cestodes Ctenotaenia marmotae are a widespread parasite of Eurasian ground squirrels. Being the only valid species of its genus, it has been recorded in ten host species from the genera Marmota and Spermophilus. Its definitive hosts live in similar ecological conditions and their area covers a wide geographical territory. Therefore, it remained unclear whether C. marmotae is a single species and how high the level of its genetic variability is. The present study analyzed the variability of two mitochondrial cestode genes from four host species from geographically distant localities. Phylogenetic analysis revealed that the newly obtained sequences form a species-level clade with already known sequences from the GenBank. Small genetic distances between the studied sequences indicate low intraspecific genetic variability within the C. marmotae, which may be a consequence of rapid expansion of the cestodes in ground squirrel species inhabiting the flat and mountain steppe landscapes in the past

    Distribution and molecular diversity of Paranoplocephala kalelai (Tenora, Haukisalmi & Henttonen, 1985) Tenora, Murai & Vaucher, 1986 in voles (Rodentia: Myodes) in Eurasia

    No full text
    Cestodes Paranoplocephala kalelai, which parasitizes in the small intestine of Myodes voles and is distributed in northern Fennoscandia, was found in six habitats in the Asian part of Russia and eastern Kazakhstan, which indicates a wider distribution of P. kalelai on the continent. Analysis of mtDNA showed that P. kalelai is characterized by significant molecular variability in Eurasia. This study complements the data on the distribution of P. kalelai and provides the first molecular data from the territory of Russia and Kazakhstan. The sequence variability of two mitochondrial genes cox1 and nad1 of P. kalelai was studied in two species of voles: gray red-backed Myodes rufocanus and northern red-backed vole Myodes rutilus. Five haplotype groups in the cox1 and nad1 gene networks were identified, and the existence of two mtDNA lines in P. kalelai outside northern Fennoscandia was confirmed. The geographical distribution of the identified haplotypes suggests that the foothills of the Altai-Sayan mountains and southern West Siberia may serve as a refugium for P. kalelai during repeated glaciations

    Academ Virus, a Novel Hantavirus in the Siberian Mole (Talpa altaica) from Russia

    No full text
    To date, six hantavirus species have been detected in moles (family Talpidae). In this report, we describe Academ virus (ACDV), a novel hantavirus harbored by the Siberian mole (Talpa altaica) in Western Siberia. Genetic analysis of the complete S-, M-, and partial L-genomic segments showed that ACDV shared a common evolutionary origin with Bruges virus, previously identified in the European mole (Talpa europaea), and is distantly related to other mole-borne hantaviruses. Co-evolution and local adaptation of genetic variants of hantaviruses and their hosts, with possible reassortment events, might have shaped the evolutionary history of ACDV

    Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda : Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp.

    Get PDF
    The common cat tapeworm Hydatigera taeniaeformis is a complex of three morphologically cryptic entities, which can be differentiated genetically. To clarify the biogeography and the host spectrum of the cryptic lineages, 150 specimens of H. taeniaeformis in various definitive and intermediate hosts from Eurasia, Africa and Australia were identified with DNA barcoding using partial mitochondrial cytochrome c oxidase subunit 1 gene sequences and compared with previously published data. Additional phylogenetic analyses of selected isolates were performed using nuclear DNA and mitochondrial genome sequences. Based on molecular data and morphological analysis, Hydatigera kamiyai n. sp. Iwaki is proposed for a cryptic lineage, which is predominantly northern Eurasian and uses mainly arvicoline rodents (voles) and mice of the genus Apodemus as intermediate hosts. Hydatigera taeniaeformis sensu stricto (s.s.) is restricted to murine rodents (rats and mice) as intermediate hosts. It probably originates from Asia but has spread worldwide. Despite remarkable genetic divergence between H. taeniaeformis s.s. and H. kamiyai, interspecific morphological differences are evident only in dimensions of rostellar hooks. The third cryptic lineage is closely related to H. kamiyai, but its taxonomic status remains unresolved due to limited morphological, molecular, biogeographical and ecological data. This Hydatigera sp. is confined to the Mediterranean and its intermediate hosts are unknown. Further studies are needed to classify Hydatigera sp. either as a distinct species or a variant of H. kamiyai. According to previously published limited data, all three entities occur in the Americas, probably due to human-mediated introductions. (C) 2016 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.Peer reviewe
    corecore