168 research outputs found

    Spectroscopic imaging of single atoms within a bulk solid

    Full text link
    The ability to localize, identify and measure the electronic environment of individual atoms will provide fundamental insights into many issues in materials science, physics and nanotechnology. We demonstrate, using an aberration-corrected scanning transmission microscope, the spectroscopic imaging of single La atoms inside CaTiO3. Dynamical simulations confirm that the spectroscopic information is spatially confined around the scattering atom. Furthermore we show how the depth of the atom within the crystal may be estimated.Comment: 4 pages and 3 figures. Accepted in Phys.Rev.Let

    Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel: Comparison of In- and Out-of-Autoclave Facesheet Configurations

    Get PDF
    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel

    Effects of epitaxial strain on the growth mechanism of YBa2Cu3O7-x thin films in [YBa2Cu3O7-x / PrBa2Cu3O7-x] superlattices

    Get PDF
    We report on the growth mechanism of YBa2Cu3O7-x (YBCO). Our study is based on the analysis of ultrathin, YBa2Cu3O7-x layers in c-axis oriented YBa2Cu3O7-x / PrBa2Cu3O7-x superlattices. We have found that the release of epitaxial strain in very thin YBCO layers triggers a change in the dimensionality of the growth mode. Ultrathin, epitaxially strained, YBCO layers with thickness below 3 unit cells grow in a block by block two dimensional mode coherent over large lateral distances. Meanwhile, when thickness increases, and the strain relaxes, layer growth turns into three dimensional, resulting in rougher layers and interfaces.Comment: 10 pages + 9 figures, accepted in Phys. Rev.

    Graphene re-knits its holes

    Get PDF
    Nano-holes, etched under an electron beam at room temperature in singlelayer graphene sheets as a result of their interaction with metalimpurities, are shown to heal spontaneously by filling up with either non-hexagon, graphene-like, or perfect hexagon 2D structures. Scanning transmission electron microscopy was employed to capture the healing process and study atom-by-atom the re-grown structure. A combination of these nano-scale etching and re-knitting processes could lead to new graphene tailoring approaches.Comment: 11 pages, 4 figure

    Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions

    Get PDF
    The chemical inertness of the defect-free basal plane confers environmental stability to MoS2 single-layers, but it also limits their chemical versatility and catalytic activity. The stability of the pristine MoS2 basal plane against oxidation under ambient conditions is a widely accepted assumption in the interpretation of various studies and applications. However, single-atom level structural investigations reported here reveal that oxygen atoms spontaneously incorporate into the basal plane of MoS2 single layers during ambient exposure. Our scanning tunneling microscopy investigations reveal a slow oxygen substitution reaction, upon which individual sulfur atoms are one by one replaced by oxygen, giving rise to solid solution type 2D MoS2-xOx crystals. O substitution sites present all over the basal plane act as single-atomic active reaction centers, substantially increasing the catalytic activity of the entire MoS2 basal plane for the electrochemical H2 evolution reaction.Comment: 6 pages, 5 figure
    corecore