351 research outputs found

    Temperature‐dependent transmission extended electron energy‐loss fine structure of aluminum

    Get PDF
    Inelastic electron scattering experiments in a transmission electron microscope provide a probe of core electron excitations that have binding energies below 2 keV, and that are localized within submicron diameter sample volumes. Extended electron energy‐loss fine‐structure measurements which show the variation with temperature of the mean squared relative displacement of aluminum yield a localized measurement of the Debye temperature which is in excellent agreement with macroscopic measurements

    A Numerical Study on the Effect of Facesheet-Core Disbonds on the Buckling Load of Curved Honeycomb Sandwich Panels

    Get PDF
    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance approach for the next-generation Space Launch System heavy lift vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method. Facesheet and core nodes in a predetermined circular region were detached to simulate a disbond induced via low-speed impact between the outer mold line facesheet and honeycomb core. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. A significant change in the slope of the edge load-deflection response was used to determine the onset of global buckling and corresponding buckling load

    Atomic Configuration of Nitrogen Doped Single-Walled Carbon Nanotubes

    Get PDF
    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighbouring local lattice distortion such as Stone-Thrower-Wales defects. The stability under the electron beam of these nanotubes has been studied in two extreme cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.Comment: 25 pages, 13 figure

    Phenomenological Model and Phase Behavior of Saturated and Unsaturated Lipids and Cholesterol

    Get PDF
    We present a phenomenological theory for the phase behavior of ternary mixtures of cholesterol and saturated and unsaturated lipids, one which describes both liquid and gel phases, and illuminates the mechanism of the behavior. In a binary system of the lipids, the two phase separate when the saturated chains are well ordered, as in the gel phase, simply due to packing effects. In the liquid phase the saturated ones are not sufficiently well ordered for separation to occur. The addition of cholesterol, however, increases the saturated lipid order to the point that phase separation is once again favorable. For the system above the main chain transition of the saturated lipid, we can obtain phase diagrams in which there is liquid-liquid phase separation in the ternary system but not in any of the binary ones, while below that temperature we obtain the more common phase diagram in which a gel phase, rich in saturated lipid, appears in addition to the two liquid phases.Comment: 16 pages, 2 figure

    Effects of epitaxial strain on the growth mechanism of YBa2Cu3O7-x thin films in [YBa2Cu3O7-x / PrBa2Cu3O7-x] superlattices

    Get PDF
    We report on the growth mechanism of YBa2Cu3O7-x (YBCO). Our study is based on the analysis of ultrathin, YBa2Cu3O7-x layers in c-axis oriented YBa2Cu3O7-x / PrBa2Cu3O7-x superlattices. We have found that the release of epitaxial strain in very thin YBCO layers triggers a change in the dimensionality of the growth mode. Ultrathin, epitaxially strained, YBCO layers with thickness below 3 unit cells grow in a block by block two dimensional mode coherent over large lateral distances. Meanwhile, when thickness increases, and the strain relaxes, layer growth turns into three dimensional, resulting in rougher layers and interfaces.Comment: 10 pages + 9 figures, accepted in Phys. Rev.

    Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel: Comparison of In- and Out-of-Autoclave Facesheet Configurations

    Get PDF
    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel

    Graphene re-knits its holes

    Get PDF
    Nano-holes, etched under an electron beam at room temperature in singlelayer graphene sheets as a result of their interaction with metalimpurities, are shown to heal spontaneously by filling up with either non-hexagon, graphene-like, or perfect hexagon 2D structures. Scanning transmission electron microscopy was employed to capture the healing process and study atom-by-atom the re-grown structure. A combination of these nano-scale etching and re-knitting processes could lead to new graphene tailoring approaches.Comment: 11 pages, 4 figure

    Position and momentum mapping of vibrations in graphene nanostructures in the electron microscope

    Full text link
    Propagating atomic vibrational waves, phonons, rule important thermal, mechanical, optoelectronic and transport characteristics of materials. Thus the knowledge of phonon dispersion, namely the dependence of vibrational energy on momentum is a key ingredient to understand and optimize the material's behavior. However, despite its scientific importance in the last decade, the phonon dispersion of a freestanding monolayer of two dimensional (2D) materials such as graphene and its local variations has still remained elusive because of experimental limitations of vibrational spectroscopy. Even though electron energy loss spectroscopy (EELS) in transmission has recently been shown to probe the local vibrational charge responses, these studies are yet limited to polar materials like boron nitride or oxides, in which huge signals induced by strong dipole moments are present. On the other hand, measurements on graphene performed by inelastic x-ray (neutron) scattering spectroscopy or EELS in reflection do not have any spatial resolution and require large microcrystals. Here we provide a new pathway to determine the phonon dispersions down to the scale of an individual freestanding graphene monolayer by mapping the distinct vibration modes for a large momentum transfer. The measured scattering intensities are accurately reproduced and interpreted with density functional perturbation theory (DFPT). Additionally, a nanometre-scale mapping of selected momentum (q) resolved vibration modes using graphene nanoribbon structures has enabled us to spatially disentangle bulk, edge and surface vibrations
    corecore