629 research outputs found
Aero acoustics of a flow pipe having a single small cavity
International audienceThe whistling of a pipe-cavity system subjected to an internal flow of fluid is considered in this paper. This phenomenon consists in a self-sustained oscillation in the shear layer that develops at the interface between the fluid flow in the pipe and fluid in the cavity. Some basic geometrical relations regarding the sound emission are considered : the cavity length, and the distance between the air inlet and the cavity. The tested pipes had lengths between 0.65m and 1.459m, and all the diameter 42mm. The maximum velocity was 30m/s. A noise reduction experiment is also presented that involves a time harmonic sound superposed on the whistling noise
Finite difference method for the acoustic radiation of an elastic plate excited by a turbulent boundary layer: a spectral domain solution
International audienceA finite difference method is developed to study, on a two-dimensional model, the acoustic pressure radiated when a thin elastic plate, clamped at its boundaries, is excited by a turbulent boundary layer. Consider a homogeneous thin elastic plate clamped at its boundaries and extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rectangular cavity. Both the cavity and the outside domain contain a perfect fluid. The fluid in the cavity is at rest. The fluid in the outside domain moves in the direction parallel to the system plate/baffle with a constant speed. A turbulent boundary layer develops at the interface baffle/plate. The wall pressure fluctuations in this boundary layer generates a vibration of the plate and an acoustic radiation in the two fluid domains. Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer developed over a vibrating surface is a very complex and unresolved task. Ducan and Sirkis [1] proposed a model for the two-way interactions between a membrane and a turbulent flow of fluid. The excitation of the membrane is modeled by a potential flow randomly perturbed. This potential flow is modified by the displacement of the membrane. Howe [2] proposed a model for the turbulent wall pressure fluctuations power spectrum over an elastomeric material. The model presented in this article is based on a hypothesis of one-way interaction between the flow and the structure: the flow generates wall pressure fluctuations which are at the origin of the vibration of the plate, but the vibration of the plate does not modify the characteristics of the flow. A finite difference scheme that incorporates the vibration of the plate and the acoustic pressure inside the fluid cavity has been developed and coupled with a boundary element method that ensures the outside domain coupling. In this paper, we focus on the resolution of the coupled vibration/interior acoustic problem. We compare the results obtained with three numerical methods: (a) a finite difference representation for both the plate displacement and the acoustic pressure inside the cavity; (b) a coupled method involving a finite difference representation for the displacement of the plate and a boundary element method for the interior acoustic pressure; (c) a boundary element method for both the vibration of the plate and the interior acoustic pressure. A comparison of the numerical results obtained with two models of turbulent wall pressure fluctuations spectrums - the Corcos model [3] and the Chase model [4] - is proposed. A difference of 20 dB is found in the vibro-acoustic response of the structure. In [3], this difference is explained by calculating a wavenumber transfer function of the plate. In [6], coupled beam-cavity modes for similar geometry are calculated by the finite difference method
Sound generation by impulse excited plates coupled to acoustics cavities.
International audienceThis paper is concerned with vibroacoustics in the time domain. One of the aims is to compare results given by an semi-analytical technique based on the resonance modes with a finite difference technique. An other goal is to describe the response of a fluid-loaded plate (displacement of the structure and sound pressure in the fluid) coupled to a rigid cavity when it is excited by a Ricker wavelet and to see the influence of the excitation on the response of system
On a tropicalization of planar polynomial ODEs with finitely many structurally stable phase portraits
Recently, concepts from the emerging field of tropical geometry have been
used to identify different scaling regimes in chemical reaction networks where
dimension reduction may take place. In this paper, we try to formalize these
ideas further in the context of planar polynomial ODEs. In particular, we
develop a theory of a tropical dynamical system, based upon a differential
inclusion, that has a set of discontinuities on a subset of the associated
tropical curve. The development is inspired by an approach of Peter Szmolyan
that uses the connection of tropical geometry with logarithmic paper. In this
paper, we define a phaseportrait, a notion of equivalence and characterize
structural stability. Furthermore, we demonstrate the results on several
examples, including a(n) (generalized) autocatalator model. Our main result is
that there are finitely many equivalence classes of structurally stable phase
portraits and we enumerate these ( in total) in the context of the
generalized autocatalator model. We believe that the property of finitely many
structurally stable phase portraits underlines the potential of the tropical
approach, also in higher dimension, as a method to obtain and identify skeleton
models in chemical reaction networks in extreme parameter regimes
The Power of Non-Determinism in Higher-Order Implicit Complexity
We investigate the power of non-determinism in purely functional programming
languages with higher-order types. Specifically, we consider cons-free programs
of varying data orders, equipped with explicit non-deterministic choice.
Cons-freeness roughly means that data constructors cannot occur in function
bodies and all manipulation of storage space thus has to happen indirectly
using the call stack.
While cons-free programs have previously been used by several authors to
characterise complexity classes, the work on non-deterministic programs has
almost exclusively considered programs of data order 0. Previous work has shown
that adding explicit non-determinism to cons-free programs taking data of order
0 does not increase expressivity; we prove that this - dramatically - is not
the case for higher data orders: adding non-determinism to programs with data
order at least 1 allows for a characterisation of the entire class of
elementary-time decidable sets.
Finally we show how, even with non-deterministic choice, the original
hierarchy of characterisations is restored by imposing different restrictions.Comment: pre-edition version of a paper accepted for publication at ESOP'1
Aeroacoustic source analysis in a corrugated flow pipe
International audienceThis study is focused on a phenomenon often encountered in flow carrying pipes, since flow instabilities caused by geometric features may generate acoustic signals and thereafter interact with these signals in such a way that powerful pure tones are produced. A modern example is found in the so-called " singing risers " , or the gas pipes connecting gas production platforms to the transport network. But the flow generated resonance in a fully corrugated circular pipe may be silenced by the addition of relatively low frequency flow oscillations induced by an acoustic generator. Experiments reported here, aimed at investigating in more detail the coupling between the flow in the pipe, the acoustically generated flow oscillations and the emitted resulting noise, are performed in a specifically designed facilit
Cosmological implications of the KATRIN experiment
The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put
unprecedented constraints on the absolute mass of the electron neutrino,
\mnue. In this paper we investigate how this information on \mnue will
affect our constraints on cosmological parameters. We consider two scenarios;
one where \mnue=0 (i.e., no detection by KATRIN), and one where
\mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect
estimates of some important cosmological parameters significantly. For example,
the significance of and the inferred value of depend
on the results from the KATRIN experiment.Comment: 13 page
Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB
We illustrate how recently improved low-redshift cosmological measurements
can tighten constraints on neutrino properties. In particular we examine the
impact of the assumed cosmological model on the constraints. We first consider
the new HST H0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the
sigma8*(Omegam/0.25)^0.41 = 0.832 +/- 0.033 constraint from Rozo et al. (2009)
derived from the SDSS maxBCG Cluster Catalog. In a Lambda CDM model and when
combined with WMAP5 constraints, these low-redshift measurements constrain sum
mnu<0.4 eV at the 95% confidence level. This bound does not relax when allowing
for the running of the spectral index or for primordial tensor perturbations.
When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of
sum mnu<0.3 eV. We test the sensitivity of the neutrino mass constraint to the
assumed expansion history by both allowing a dark energy equation of state
parameter w to vary, and by studying a model with coupling between dark energy
and dark matter, which allows for variation in w, Omegak, and dark coupling
strength xi. When combining CMB, H0, and the SDSS LRG halo power spectrum from
Reid et al. 2009, we find that in this very general model, sum mnu < 0.51 eV
with 95% confidence. If we allow the number of relativistic species Nrel to
vary in a Lambda CDM model with sum mnu = 0, we find Nrel =
3.76^{+0.63}_{-0.68} (^{+1.38}_{-1.21}) for the 68% and 95% confidence
intervals. We also report prior-independent constraints, which are in excellent
agreement with the Bayesian constraints.Comment: 19 pages, 6 figures, submitted to JCAP; v2: accepted version. Added
section on profile likelihood for Nrel, improved plot
The Role of Parvalbumin-positive Interneurons in Auditory Steady-State Response Deficits in Schizophrenia
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Despite an increasing body of evidence demonstrating subcellular alterations in parvalbumin-positive (PV+) interneurons in schizophrenia, their functional consequences remain elusive. Since PV+ interneurons are involved in the generation of fast cortical rhythms, these changes have been hypothesized to contribute to well-established alterations of beta and gamma range oscillations in patients suffering from schizophrenia. However, the precise role of these alterations and the role of different subtypes of PV+ interneurons is still unclear. Here we used a computational model of auditory steady-state response (ASSR) deficits in schizophrenia. We investigated the differential effects of decelerated synaptic dynamics, caused by subcellular alterations at two subtypes of PV+ interneurons: basket cells and chandelier cells. Our simulations suggest that subcellular alterations at basket cell synapses rather than chandelier cell synapses are the main contributor to these deficits. Particularly, basket cells might serve as target for innovative therapeutic interventions aiming at reversing the oscillatory deficits.Peer reviewe
ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression
<p>Abstract</p> <p>Background</p> <p><b>A D</b>isintegrin <b>A</b>nd <b>M</b>etalloprotease (ADAM) 9 has been implicated in tumour progression of various solid tumours, however, little is known about its role in renal cell carcinoma. We evaluated the expression of ADAM9 on protein and transcript level in a clinico-pathologically characterized renal cell cancer cohort.</p> <p>Methods</p> <p>108 renal cancer cases were immunostained for ADAM9 on a tissue-micro-array. For 30 additional cases, ADAM9 mRNA of microdissected tumour and normal tissue was analyzed via quantitative RT-PCR. SPSS 14.0 was used to apply crosstables (Fisher's exact test and χ<sup>2</sup>-test), correlations and univariate as well as multivariate survival analyses.</p> <p>Results</p> <p>ADAM9 was significantly up-regulated in renal cancer in comparison to the adjacent normal tissue on mRNA level. On protein level, ADAM9 was significantly associated with higher tumour grade, positive nodal status and distant metastasis. Furthermore, ADAM9 protein expression was significantly associated with shortened patient survival in the univariate analysis.</p> <p>Conclusion</p> <p>ADAM9 is strongly expressed in a large proportion of renal cell cancers, concordant with findings in other tumour entities. Additionally, ADAM9 expression is significantly associated with markers of unfavourable prognosis. Whether the demonstrated prognostic value of ADAM9 is independent from other tumour parameters will have to be verified in larger study cohorts.</p
- …