18 research outputs found

    Inflammation, plasticity and real-time imaging after cerebral ischemia

    Full text link

    Solar cells based on synthesized nanocrystalline ZnO thin films sensitized by chlorophyll a and photopigments isolated from spinach

    No full text
    The principles of dye-sensitized solar cells were studied and are outlined in this thesis. An overview of the basic steps needed to create a DSC isfollowed by detailed experimental information on how to assemble the solar cells that were fabricated in this project. They were based on synthesizednanocrystalline ZnO thin films sensitized by chlorophyll a as well as isolated photopigments from spinach leaves. The nanocrystals werestudied using XRD, and it was confirmed that three different methods of synthesis resulted in ZnO crystals of a few nanometers. The solar cellswere assembled with Au electrodes in a sandwich configuration and their photovoltaic properties were measured. Overall light-to-electricity conversionwas low with the highest efficiency being 0.21 %. An astonishingly low efficiency of 0.0003 % was noted for a thin film which was not thermallytreated, and it is suggested that heat-treatment is of great importance. It was also found that photopigments from spinach can be extractedeasily and used as molecular sensitizer without any demanding purification steps

    Magnetron Sputtering of Nanocomposite Carbide Coatings for Electrical Contacts

    No full text
    Today’s electronic society relies on the functionality of electrical contacts. To achieve good contact properties, surface coatings are normally applied. Such coatings should ideally fulfill a combination of different properties, like high electrical conductivity, high corrosion resistance, high wear resistance and low cost. A common coating strategy is to use noble metals since these do not form insulating surface oxides. However, such coatings are expensive, have poor wear resistance and they are often applied by electroplating, which poses environmental and human health hazards. In this thesis, nanocomposite carbide-based coatings were studied and the aim was to evaluate if they could exhibit properties that were suitable for electrical contacts. Coatings in the Cr-C, Cr-C-Ag and Nb-C systems were deposited by magnetron sputtering using research-based equipment as well as industrial-based equipment designed for high-volume production. To achieve the aim, the microstructure and composition of the coatings were characterized, whereas mechanical, tribological, electrical, electrochemical and optical properties were evaluated. A method to optically measure the amount of carbon was developed. In the Cr-C system, a variety of deposition conditions were explored and amorphous carbide/amorphous carbon (a-C) nanocomposite coatings could be obtained at substrate temperatures up to 500 °C. The amount of a-C was highly dependent on the total carbon content. By co-sputtering with Ag, coatings comprising an amorphous carbide/carbon matrix, with embedded Ag nanoclusters, were obtained. Large numbers of Ag nanoparticles were also found on the surfaces. In the Nb-C system, nanocrystalline carbide/a-C coatings could be deposited. It was found that the nanocomposite coatings formed very thin passive films, consisting of both oxide and a-C. The Cr-C coatings exhibited low hardness and low-friction properties. In electrochemical experiments, the Cr-C coatings exhibited high oxidation resistance. For the Cr-C-Ag coatings, the Ag nanoparticles oxidized at much lower potentials than bulk Ag. Overall, electrical contact resistances for optimized samples were close to noble metal references at low contact load. Thus, the studied coatings were found to have properties that make them suitable for electrical contact applications

    Passive films on nanocomposite carbide coatings for electrical contact applications

    Get PDF
    Nanocomposite transition metal carbide/amorphous carbon coatings (Me-C/a-C) deposited by magnetron sputtering have excellent electrical contact properties. The contact resistance can be as low as that of noble metal coatings, although it is known to vary by several orders of magnitude depending on the deposition conditions. We have investigated a nanocrystalline niobium carbide/amorphous carbon (NbC (x) /a-C:H) model system aiming to clarify factors affecting the contact resistance for this group of contact materials. For the first time, the surface chemistry is systematically studied, by angle-resolved X-ray photoelectron spectroscopy, and in extension how it can explain the contact resistance. The coatings presented a mean oxide thickness of about 1 nm, which could be grown to 8 nm by annealing. Remarkably, the contact resistances covered four orders of magnitude and were found to be exponentially dependent on the mean oxide thickness. Moreover, there is an optimum in the amount of a-C:H phase where the contact resistance drops very significantly and it is thus important to not only consider the mean oxide thickness. To explain the results, a model relying on surface chemistry and contact mechanics is presented. The lowest contact resistance of a nanocomposite matched that of a gold coating at 1 N load (vs. gold), and such performance has previously not been demonstrated for similar nanocomposite materials, highlighting their useful properties for electrical contact applications.Funding Agencies|Swedish Foundation; Swedish Governmental Agency for Innovation Systems; Swedish Research Council [VR 2011-3492]; Synergy Grant FUNCASE, Functional Carbides and Advanced Surface Engineering</p

    Growth and characterization of chromium carbide films deposited by high rate reactive magnetron sputtering for electrical contact applications

    Get PDF
    Chromium carbide films with different phase contents were deposited at 126±26 °C by industrial high rate reactivemagnetron sputtering, using both direct current magnetron sputtering (DCMS) and high power impulsemagnetron sputtering (HiPIMS). Film structure and properties were studied by SEM, XRD, TEM, XPS, NRA, Raman spectroscopy, nanoindentation, unlubricated reciprocating sliding experiments, and a laboratory setup to measure electrical contact resistance. The films consisted of amorphous a-CrCy, a nanocrystalline minority phase of metastable cubic nc-CrCx, and a hydrogenated graphite-like amorphous carbon matrix (a-C:H). The DCMS and HiPIMS processes yielded films with similar phase contents and microstructures, as well as similar functional properties. Low elastic modulus, down to 66 GPa, indicated good wear properties via a hardness/elastic modulus (H/E) ratio of 0.087. Unlubricated steady-state friction coefficients down to 0.13 were obtained for films with 69 at.% carbon, while the electrical contact resistance could be reduced by two orders of magnitude by addition of a-C:H phase to purely carbidic films. The present films are promising candidates for sliding electrical contact applications

    Structure and properties of Cr-C/Ag films deposited by magnetron sputtering

    Get PDF
    Cr-C/Ag thin films with 0-14 at% Ag have been deposited by magnetron sputtering from elemental targets. The samples were analyzed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to study their structure and chemical bonding. A complex nanocomposite structure consisting of three phases; nanocrystalline Ag, amorphous CrCx and amorphous carbon is reported. The carbon content in the amorphous carbide phase was determined to be 32-33 at% C, independent of Ag content Furthermore, SEM and XPS results showed higher amounts of Ag on the surface compared to the bulk. The hardness and Young's modulus were reduced from 12 to 8 GPa and from 270 to 170 GPa, respectively, with increasing Ag content. The contact resistance was found to decrease with Ag addition, with the most Ag rich sample approaching the values of an Ag reference sample. Initial tribological tests gave friction coefficients in the range of 0.3 to 0.5, with no clear trends. Annealing tests show that the material is stable after annealing at 500 degrees C for 1 h, but not after annealing at 800 degrees C for 1 h. In combination, these results suggest that sputtered Cr-C/Ag films could be potentially applicable for electric contact applications
    corecore