497 research outputs found

    Salt flux in a laboratory model estuary

    Get PDF
    Motivated by recent field observations, a laboratory model estuary experiment was conducted for the study of its flow and stratification. We find that a small inflow of cold freshwater, on top of warm saline water can lead to a large counter flow in the lower layer. This counter flow is part of a large aspect ratio convective cell driven by the horizontally varying diffusive cooling from above. Particle Image Velocimetry (PIV) measurement of the Reynolds stresses associated with transient tilted plumes embedded in this convective cell show that the viscous dissipation of the large-scale cellular flow is largely balanced by the Reynolds stress divergence of the tilted plumes. Using Optical Rotation measurements along with the PIV derived mean flow we find that the internal “salt” flux has Nusselt number (the ratio of convective to diffusive transport) of order 103. Although the convection is vertically forced, the flow is essentially horizontal, and there is very little vertical mixing across the interface between the two layers

    An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds

    Get PDF
    The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated HIRAD dataset sampled during a hurricane and uses EnKF to forecast the track and intensity prediction of the hurricane. Comparisons to truth and error metrics are used to assess the model?s forecast performance

    The impact of current and possibly future sea surface temperature anomalies on the frequency of Atlantic hurricanes

    Get PDF
    A brief summary of the current capabilities of a high resolution global numerical prediction model towards resolving the life cycles of hurricanes is first presented. Next, we illustrate the results of season long integrations for the years 1987 and 1988 using the observed sea surface temperature (SST) anomalies over the global oceans. The model being used here is the FSU atmospheric global spectral model at the horizontal resolution of T42 and with 16 vertical layers. The main emphasis of this study is on hurricane tracks for these and for global warming experiments. The global warming scenarios were modeled using doubled CO2 and enhanced SST anomalies. The model being atmospheric does not simulate the ocean, and SST anomalies need to be prescribed. It is assumed in these experiments that the SST anomalies of the doubled CO2 world appear similar to those of the current period but that they are slightly warmer over the global tropics. That is determined using a simple proportionality relationship requiring an enhancement of the global mean SST anomaly over the tropics. Such an enhancement of the SST anomaly of an El Nino year 1987 amplifies the SST anomaly for the El Nino of the double CO2 atmosphere somewhat. The La Nina SST anomalies were similarly enhanced for the double CO2 atmosphere during 1988. These hurricane season experiments cover the period June through October for the respective years. It was necessary to define the thresholds for a model simulated hurricane; given such a definition we have compared first the tracks and frequency of storms based on the present day CO2 simulations with the observed storms for 1987 and 1988. Those comparisons were noted to be very close to the observed numbers of the storms. The doubled CO2 storms show a significant enhancement of the frequency of storms for the La Nina periods, however there was no noticeable change for the El Nino experiments. We have also run an experiment using the SST anomalies from a triple CO2 climate run made at the Max Planck Institut at Hamburg, This experiment simulated some 7 hurricanes over the Atlantic Ocean. The intensity of hurricanes, inferred from maximum winds at 850 mb, show that on the average the storms are slightly more intense for the double CO2 experiments compared to the storms simulated from current CO2 conditions. The triple CO2 storms were slightly stronger in this entire series of experiments

    Aerosol and pollutant transport and their impact on radiative forcing over the tropical Indian ocean during the January - February 1996 pre-INDOEX cruise

    Get PDF
    Measurements of aerosol bulk composition, optical depth, size distribution and the incoming solar radiation flux were carried out over the coastal waters of India, the Arabian sea and the tropical Indian Ocean during a cruise conducted in January 1996. Aerosol concentrations were relatively high throughout much of the cruise, even when the ship was at considerable distances from land. In this paper, we link the observed spatial variations and meridional gradients in the measurements to monsoonal and inter-hemispheric transport across the ITCZ using a high resolution global reanalysis that highlights the winter monsoon. We show that the northeast monsoonal low level flow can transport sulfates, mineral dust and other aerosols from the Indian sub-continent to the ITCZ within 6–7 days. These transports result in an increase the aerosol optical depth (AOD) at the equator by as much as 0.2 and a decrease in the solar radiative forcing at the sea surface by about 10–20 Wm-2. The high concentrations of continental aerosols are a result of three factors: strong (about 6–10 m/s) near-surface northerly flow; a shallow boundary layer of about 400 to 800 m thick, which traps the pollutants; subsidence, associated with the northeast monsoon, which suppresses rainfall over most of the Arabian sea and thus minimizes the wet removal process. In addition dust can be transported in the middle troposphere from the Arabian desert to the cruise region 4000 km away with a transit time of 2–3 days. There is strong evidence of interhemispheric transports effected by eddies that wrap around the ITCZ. These eddies bring clean southern hemisphere air to about 10°N in the Indian Ocean and carry polluted continental air into the southern-hemisphere. In this manner, substantial amounts of aerosols and other pollutants can be routinely transported to the southern-hemisphere Indian Ocean during the northeast monsoon. Thus, in order to understand the connection between continental emissions and impacts over the Indian Ocean, it is necessary to focus on the rôle of the northeast monsoon in the large-scale atmospheric circulation over this region

    Impact of CAMEX-4 Data Sets for Hurricane Forecasts using a Global Model

    Get PDF
    This study explores the impact on hurricane data assimilation and forecasts from the use of dropsondes and remote-sensed moisture profiles from the airborne Lidar Atmospheric Sensing Experiment (LASE) system. We show that the use of these additional data sets, above those from the conventional world weather watch, has a positive impact on hurricane predictions. The forecast tracks and intensity from the experiments show a marked improvement compared to the control experiment where such data sets were excluded. A study of the moisture budget in these hurricanes showed enhanced evaporation and precipitation over the storm area. This resulted in these data sets making a large impact on the estimate of mass convergence and moisture fluxes, which were much smaller in the control runs. Overall this study points to the importance of high vertical resolution humidity data sets for improved model results. We note that the forecast impact from the moisture profiling data sets for some of the storms is even larger than the impact from the use of dropwindsonde based winds

    ENSEMBLES: a new multi-model ensemble for seasonal-to-annual predictions: Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs

    Get PDF
    A new 46-year hindcast dataset for seasonal-to-annual ensemble predictions has been created using a multi-model ensemble of 5 state-of-the-art coupled atmosphere-ocean circulation models. The multi-model outperforms any of the single-models in forecasting tropical Pacific SSTs because of reduced RMS errors and enhanced ensemble dispersion at all lead-times. Systematic errors are considerably reduced over the previous generation (DEMETER). Probabilistic skill scores show higher skill for the new multi-model ensemble than for DEMETER in the 4–6 month forecast range. However, substantially improved models would be required to achieve strongly statistical significant skill increases. The combination of ENSEMBLES and DEMETER into a grand multi-model ensemble does not improve the forecast skill further. Annual-range hindcasts show anomaly correlation skill of ∼0.5 up to 14 months ahead. A wide range of output from the multi-model simulations is becoming publicly available and the international community is invited to explore the full scientific potential of these data
    corecore