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[1] A new 46-year hindcast dataset for seasonal-to-annual
ensemble predictions has been created using a multi-model
ensemble of 5 state-of-the-art coupled atmosphere-ocean
circulation models. The multi-model outperforms any of the
single-models in forecasting tropical Pacific SSTs because
of reduced RMS errors and enhanced ensemble dispersion
at all lead-times. Systematic errors are considerably reduced
over the previous generation (DEMETER). Probabilistic
skill scores show higher skill for the new multi-model
ensemble than for DEMETER in the 4–6 month forecast
range. However, substantially improved models would be
required to achieve strongly statistical significant skill
increases. The combination of ENSEMBLES and
DEMETER into a grand multi-model ensemble does not
improve the forecast skill further. Annual-range hindcasts
show anomaly correlation skill of �0.5 up to 14 months
ahead. A wide range of output from the multi-model
simulations is becoming publicly available and the
international community is invited to explore the full
scientific potential of these data. Citation: Weisheimer, A.,

F. J. Doblas-Reyes, T. N. Palmer, A. Alessandri, A. Arribas,

M. Déqué, N. Keenlyside, M. MacVean, A. Navarra, and P. Rogel

(2009), ENSEMBLES: A new multi-model ensemble for

seasonal-to-annual predictions—Skill and progress beyond

DEMETER in forecasting tropical Pacific SSTs, Geophys. Res.

Lett., 36, L21711, doi:10.1029/2009GL040896.

1. Introduction

[2] Over the last years, multi-model ensembles (MMEs)
have become powerful tools to account for uncertainties due
to model error in dynamical model-based predictions on
time scales from days to seasons and centuries. Their
success in ensemble forecasting on seasonal time scales
relies mainly on reducing an apparent overconfidence of all
single-model ensembles, that is MMEs widen the ensemble
spread while the average ensemble-mean error is reduced
[Weigel et al., 2008].
[3] Here, first results from a new MME for seasonal-to-

annual predictions are presented based on five leading

European global coupled climate models constructed as part
of the ENSEMBLES project. The scientific basis for sea-
sonal predictability lies in the slowly evolving components
of the climate system, like the ocean or land surface, that act
as boundary conditions for the atmosphere with its shorter
intrinsic time scales. A prime example of a coupled atmo-
spheric and oceanic phenomenon is the ENSO (El Niño/
Southern Oscillation) event in the tropical Pacific, which is
the dominant mode of seasonal and interannual climate
variability. The ENSEMBLES MME forecast skill for
tropical Pacific SSTs is demonstrated and compared with
a previous-generation MME for seasonal forecasting
(DEMETER [see Palmer et al., 2004]).
[4] The scope of this paper is threefold: i) In Section 2, a

documentation of the new ENSEMBLES MME and the set-
up of the re-forecast experiments is given. ii) Results of an
assessment of systematic errors and forecast quality in the
tropical Pacific and progress over the DEMETER MME are
presented in Sections 3 and 4. iii) A large number of
atmospheric and oceanic data from the ENSEMBLES
re-forecast experiments are becoming publicly available
and strategies of data dissemination are described in
Section 5. Section 6 summarizes and discusses the findings.

2. ENSEMBLES Seasonal-to-Annual Multi-
model Experiments

[5] The ENSEMBLES MME for seasonal-to-annual fore-
casts comprises global coupled atmosphere-ocean climate
models from the UK Met Office (UKMO), Météo France
(MF), the European Centre for Medium-Range Weather
Forecasts (ECMWF), the Leibniz Institute of Marine
Sciences at Kiel University (IFM-GEOMAR) and the Euro-
Mediterranean Centre for Climate Change (CMCC-INGV) in
Bologna. All models include major radiative forcings. None
of the coupled models has flux adjustments. The atmosphere
and ocean were initialized using realistic estimates of their
observed states and each model was run from an ensemble of
nine initial conditions. Table 1 summarizes the main model
components and their initialization strategies. Further details
on the initial condition perturbations can be found in the
auxiliary material.7

[6] Retrospective forecasts, or hindcasts, that emulate real-
time seasonal forecast situations for the past, were performed
in a coordinated experiment by the above-described models.
The common hindcast period of the ENSEMBLES MME

7Auxiliary materials are available in the HTML. doi:10.1029/
2009GL040896.
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covers the 46 years 1960–2005. For each year, 7-month-long
seasonal forecasts starting on 1st of February, May, August,
andNovember have been issued. Additionally, theNovember
forecasts from all models except for CMCC-INGV were
extended to 14-month-long annual forecast.
[7] The skill of the DEMETER MME for seasonal

forecasts was computed for comparison. Since DEMETER,
the models used in ENSEMBLES have improved in all
aspects: in their physical parameterizations, by including
additional components (e.g., sea-ice or land-surface
modules) and interannual variability in the greenhouse gas
forcing; in resolution and in the initialization. The DEMETER
MME is available in two different configurations: a three-
model ensemble over the hindcast period 1960–2001 and a
seven-model ensemble covering the period 1980–2001.
Similar to ENSEMBLES, the individual model ensembles
consist of 9 ensemble members.
[8] There are several ways to construct MMEs by com-

bining individual models [e.g., Krishnamurti et al., 1999;
Doblas-Reyes et al., 2005]. However, given the relatively
small sample size of seasonal hindcasts, finding robust non-
equal weights in the combination of models proved difficult.
Thus, the simplest and most straightforward approach by
applying equal weights to all contributing models and
ensemble members is used here.

3. Systematic SST Errors

[9] Although initialized using observations, seasonal
forecast models develop, over the forecast time, systematic
errors that lead the models to drift away from the observed
state. Figure 1a shows the mean model drift for sea surface
temperature (SST), estimated from all ensemble members
and hindcasts, in the Niño3 region (5�S–5�N, 150�W–
90�W) of the ENSEMBLES models for each of the four
start months. The annual cycle of the model SSTs is in a

good agreement with observations (Figure 1b). For com-
parison, Figures 1c and 1d show the SST drift for the
DEMETER models. It is clear from Figure 1 that consider-
able progress has been made since DEMETER in reducing
the systematic SST errors, in particular on longer lead-times.
While the SST drift in DEMETER (Figure 1d) varied
between +2� C and �7� C for up to 6 months lead, the
ENSEMBLES models have a much reduced drift with an
overall amplitude of less than ±1.5� C. Global maps of SST
biases at different lead times for 5 DEMETER models and
their corresponding ENSEMBLES models are shown in
Figures S2 and S3. As can be seen, most models have reduced
SST biases in the whole Tropics, not only over the Pacific.
However, Figures S2 and S3 also point out that there are
still substantial areas, e.g., over the cold upwelling regions
at the eastern boundaries of the oceans, where systematic
errors are large and have, despite all efforts, not much
improved in ENSEMBLES. It is impossible to isolate
specific reasons for the improvements in the tropical Pacific
because the coupled model systems have undergone a
number of changes to their complexity, physics, resolution
and initialization, as mentioned above. Experiments to test
all these changes separately are not available.

4. Forecasting SST Anomalies in the Tropical
Pacific

[10] The systematic errors discussed in Section 3 have
been corrected for computing forecast anomalies by linearly
removing the long-term mean over the hindcast period for a
given start date and lead-time. The corrections were applied
in cross-validation mode (by leaving one out) in order to
emulate real-time forecast conditions as closely as possible.
As an illustration of the forecast anomalies, Figure S4
shows time series over the hindcast period 1960 to 2005
of Niño3 SST anomalies in DJF as forecasted 2–4 and 5–7

Figure 1. Systematic errors of the Niño3 SSTs in seasonal hindcasts. (a) Mean model drift relative to ERA-40 for the
5 ENSEMBLES models over the period 1960–2005, 4 start dates, up to 7 months lead-time; (b) as in Figure 1a but
absolute SSTs. The black dashed line shows the annual cycle of the verification; c) as in Figure 1a but for the 3 DEMETER
models over 1960–2001 and up to 6 month lead-time; d) as in Figure 1a but for the 7 DEMETER models over 1980–2001
and up to 6 months. Color code: red, MF; dark blue, ECMWF; green, UKMO; orange, IFM-GEOMAR; light blue,
CMCC-INGV; pink, CERFACS; gray, LODYC.
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months ahead. They show a very good agreement between
the forecast and observed SST anomalies for all models and
demonstrate how forecast uncertainty grows with forecast
range. The correlations of the ensemble-mean of all models
with the verification are highly statistically significant, even
at longer lead times. The MME correlation is larger than, or
equal to, the best correlation from the individual model
ensemble.
[11] Figure 2 shows the temporal evolution of ensemble-

mean root-mean square error (RMSE), ensemble spread and
anomaly correlation for the Niño3 SST hindcasts anomalies.
Figures 2a and 2c display all individual ENSEMBLES
models, while Figures 2b and 2d show the MME. For
comparison, a simple statistical persistence forecast is also
given.
[12] In a perfect ensemble, over a large number of

ensemble forecasts, the RMSE of the ensemble mean would
equal the ensemble spread about the ensemble mean. A
general feature of all single-model ensembles is, however,
that the ensemble spread is substantially smaller than the
RMSE (Figure 2a), that is, each individual ensemble is
strongly underdispersive, or overconfident. As has been
demonstrated in numerous studies [e.g., Palmer et al.,
2004; Weigel et al., 2008], the multi-model combination
effectively reduces the RMSE while the ensemble spread is
increased leading to overall improved skill. For the

ENSEMBLES MME SSTs this leads to an almost perfect
match between the RMSE and spread (Figure 2b). Results
for anomaly correlation in Figures 2c and 2d indicate that
the MME also improves the correlation skill versus the
individual models with correlations above 0.7 at 7-month
lead-time.
[13] A similar evolution of RMSE and spread was found

in the DEMETER three-model MME (Figure 2e). However,
the seven-model DEMETER MME revealed, over the
hindcast period 1980–2001, an overestimation of the
ensemble spread (Figure 2f). Note that the MME evolution
in Figures 2b and 2e would not change noticeably if
computed over the 1980–2001 period.
[14] As a measure of probabilistic forecast skill Figure 3

shows the Brier skill score (BSS) of Niño3 SSTs for the
ENSEMBLES, DEMETER and the combined grand
ENSEMBLES & DEMETER MMEs. Where BSS = 1 the
forecasts are perfect; BSS = 0 means the forecasts have as
much skill as the reference, and BSS < 0 means less skillful
than the reference forecast. The reference is the climatolog-
ical forecast. The skill of the ENSEMBLES hindcasts is, on
average, better than in DEMETER, especially for longer
lead-times of 4–6 months (Figures 3c and 3d). Interestingly,
this is a forecast range for which the systematic errors in
ENSEMBLES are reduced the largest (cf. Figure 1).
However, the uncertainty ranges of the BSS estimation as

Figure 2. Niño3 SST RMSE (solid), ensemble standard deviation around the ensemble mean (dashed) and anomaly
correlation (solid) as a function of forecast lead-time based on 4 start dates per year. (a–d) ENSEMBLES 1960–2005;
(e) DEMETER multi-model over 1960–2001 and (f) DEMETER multi-model over 1980–2001. Multimodel results are
shown in red and individual model ensembles Figures 2a and 2c in color as in Figure 1. The black dash-dotted curve
indicates the performance of a persistence forecast.
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expressed by the vertical bars in Figure 3, indicate that the
differences are not significant.
[15] Hindcasts starting in November have been extended

to 14 months in order to explore predictability on annual
time scales. Figure 4 shows that there is some skill on these
long lead-times for Niño3 SSTs. The anomaly correlation
drops to 0.5 at month 9 and remains nearly constant
thereafter. Remarkably, the above-mentioned good match
between the RMSE and spread of the ensemble is further
sustained over the extended forecast lead-time with an
approximately linear error and spread growth.

5. Public Data Dissemination

[16] A common set of hindcast data from the ENSEMBLES
models has been archived and is being publicly disseminated
without charge for use in research, education and commercial
work. The list of atmospheric variables contains daily and
monthly mean data. The ocean output includes monthly
means of ocean analyses and forecasts. Further details are
given in the auxiliary material.
[17] Two dissemination systems, one based on the

ECMWF Meteorological Archival and Retrieval System
(MARS) and another one based on the Open-source Project
for a Network Data Access Protocol (OPeNDAP), are
provided to help users to access the ENSEMBLES data in
the most efficient way for their specific requirements, see
auxiliary material and http://www.ecmwf.int/research/

EU_projects/ENSEMBLES/data/data_dissemination.html.
The ENSEMBLES data are also available through the
KNMI Climate Explorer, an interactive tool to analyze
climate data [van Oldenborgh and Burgers, 2005].

6. Discussion and Conclusions

[18] A new re-forecast dataset for seasonal-to-annual time
scales has been introduced based on anMME of five state-of-
the-art coupled atmosphere-ocean circulation models. The
MME has a smaller Niño3 SST RMSE and a much improved
spread-skill relationship at all lead-times compared to any of
the contributing single-model ensembles. Progress over the
DEMETERMME includes a notable reduction of systematic
errors and improved probabilistic forecast skill scores, in
particular for longer lead-times of 4–6 months. While the
main conclusions of this study also hold for other regions in
the tropical Pacific, the exact degree of these improvements
depends on the region, season, forecast lead-time and event.
[19] The combination of ENSEMBLES and DEMETER

into a grand MME does not improve the forecast skill from
ENSEMBLES any further (Figure 3). Why is that? The
central reason for enhanced skill in a MME is the reduction
of the overconfidence of the single-model ensembles, i.e.,
transforming the largely under-dispersive forecasts from
each single-model ensemble into a better-dispersed MME
[Weigel et al., 2008]. The spread-skill relationship in the
ENSEMBLES MME is already close to perfect. Therefore,

Figure 3. Brier Skill Score (BSS) for Niño3 SST hindcasts in DEMETER (blue), ENSEMBLES (red) and the
combination of DEMETER and ENSEMBLES (green) with respect to a climatological forecast. The scores are for lead-
times (a and b) 2–4 months and (c and d) 4–6 months and all 4 start dates over the period 1980–2001. The events
considered are SST anomalies falling below the lower (Figures 3a and 3c) and above the upper (Figures 3b and 3d) terciles.
The range of the bars indicates the 95% confidence interval estimates from 10.000 bootstrap re-samples with replacement.
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adding more ensemble members does not improve the
spread-skill relation and related skill measures like the
BSS. This effect is demonstrated in Figure S5 showing
the RMSE and ensemble spread over lead-time for the
grand DEMETER & ENSEMBLES MME. Similar to the
DEMETER MME in Figure 2f, the grand MME is already
over-dispersive (the same conclusion holds if the grand
MME were to be constructed using only the 3-model
DEMETER ensemble). In contrast, the ENSEMBLES
MME in Figure 2b is well-dispersed as indicated by a better
match between the RMSE and the ensemble spread. In such
circumstances, the multi-model approach cannot further
improve probabilistic forecast skill.
[20] For detailed discussions of more specific aspects

of forecast quality the reader is referred to a follow-up
paper (A. Alessandri et al., Evaluation of probabilistic
quality and value of the ENSEMBLES multi-model sea-
sonal forecasts: Comparison with DEMETER, submitted to
Geophysical Research Letters, 2009).
[21] On the other hand, a statistically significant increase

in forecast skill in the tropical Pacific over DEMETER is
not achieved either by the ENSEMBLES MME or by the
combined ENSEMBLES & DEMETER MME. This sug-
gests that, to make substantial progress over the status quo
in forecasting tropical Pacific SSTs fundamentally improved
models that lead to intrinsically better probabilistic forecast
skill are required. It is possible that this can only be
achieved with substantially higher resolution models than
are currently available [Shukla et al., 2009].
[22] Extending the length of the hindcasts beyond sea-

sonal time scales up to 14 months indicates an approxi-

mately linear growth of the RMSE and ensemble spread. No
further degradation of the SST anomaly correlation after
month 9 with r � 0.5 was found. Whether this will translate
into useful forecast skill for applications remains to be
demonstrated.
[23] A wide range of atmospheric and oceanic output

from the ENSEMBLES MME simulations including ocean
reanalyses are becoming publicly available and the interna-
tional community is invited to explore the full scientific
potential of these data.
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Figure 4. Niño3 SST annual-range (14 months) hindcasts
of the ENSEMBLES multi-model over the period 1960–
2005 for November start dates. (a) RMSE (red solid) and
ensemble standard deviation (red dashed) as a function of
forecast lead-time. The black dash-dotted curve indicates
the skill of the climatological forecast. (b) Anomaly
correlation. Note that CMCC-INGV did not contribute to
the annual-range multi-model ensemble.
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