167 research outputs found

    Cyclodextrin Complexes of Reduced Bromonoscapine in Guar Gum Microspheres Enhance Colonic Drug Delivery

    Get PDF
    Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase−solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier transforms infrared spectroscopy indicated entrance of an O−CH2 or OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β- CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3−C6H4−OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer

    Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior

    Get PDF
    The abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular disease and obesity. This set of conditions, known as metabolic syndrome, is a global pandemic of enormous medical, economic, and social concern affecting a significant portion of the world’s population. Although genetics, physiology and environmental components play a major role in the onset of disease caused by excessive fat accumulation, little is known about how or to what extent each of these factors contributes to it. The worm, Caenorhabditis elegans offers an opportunity to study disease related to metabolic disorder in a developmental system that provides anatomical and genomic simplicity relative to the vertebrate animals and is an excellent eukaryotic genetic model which enable us to answer the questions concerning fat accumulation which remain unresolved. The stored triglycerides (TG) provide the primary source of energy during periods of food deficiency. In nature, lipid stored as TGs are hydrolyzed into fatty acids which are broken down through β-oxidation to yield acetyl-CoA. Our recent study suggests that a member of C. elegans Krüppel-like factor, klf-3 regulates lipid metabolism by promoting FA β-oxidation and in parallel may contribute in normal reproduction and fecundity. Genetic and epigenetic factors that influence this pathway may have considerable impact on fat related diseases in human. Increasing number of studies suggest the role of mammalian KLFs in adipogenesis. This functional conservation should guide our further effort to explore C. elegans as a legitimate model system for studying the role of KLFs in many pathway components of lipid metabolism

    Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy

    Get PDF
    The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min)

    In vitro evaluation of Mucuna pruriens (L.) DC. antioxidant activity

    Get PDF
    Mucuna pruriens (L). Dc is a plant of the Fabaceae family, commonly known as velvet bean, itchy bean, chiporro bean, mucuna, among others. This plant has several medicinal properties, including its potential to treat Parkinson's disease (PD). International studies have shown that this plant surpasses the benefits of the substance levodopa in the treatment of PD. Taking into account that nerve cells are highly sensitive to oxidative substances, this study evaluated the antioxidant activity of mucuna and compared it to that of levodopa. The plant seeds' phenolic concentration was quantified by using the Folin-Denis reagent and the antioxidant activity assays were performed by using three different methods: the reduction of the phosphomolybdenium complex, the reduction of radical 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and the formation of radical monocation ABTS•+, from the acid [2-2'-azinobis (3-ethylbenzothiazoline-6-sulfonate)]. Results showed that M. pruriens presents high antioxidant capacity, although not superior to isolated levodopa antioxidant capacity. Therefore, further studies should be performed to elucidate the activity of this plant in humans.A Mucuna pruriens (L). Dc é uma planta da família Fabaceae, conhecida popularmente como feijão-veludo, fava-coceira, feijão chiporro, mucuna, entre outros. Possui diversas propriedades medicinais, entre elas, o tratamento da doença de Parkinson (DP). Estudos internacionais vêm demonstrando que essa planta possui atividade superior à do fármaco levodopa para o tratamento da DP. O presente estudo avaliou a possibilidade da atividade antioxidante dessa planta auxiliar nesses resultados, uma vez que as células nervosas são altamente sensíveis às substâncias oxidativas. Para isto foi quantificada a concentração fenólica da semente da mucuna e os testes empregados para a avaliação da atividade antioxidante foram o teste de redução do complexo fosfomolibdênio, redução do radical 1,1-difenil-2-picril-hidrazil (DPPH•) e a formação do radical monocatiônico ABTS•+, proveniente do ácido [2-2'-azino-bis(3-etil-benzolina-6-sulfonado)]. Essa análise demonstrou que M. pruriens possui alta capacidade antioxidante, no entanto, não superior à levodopa isolada e, portanto, novos estudos devem ser realizados para a elucidação da atividade dessa planta em seres humanos

    Self-emulsifying therapeutic system: a potential approach for delivery of lipophilic drugs

    Get PDF
    Self-emulsifying therapeutic system (SETs) provide an effective and intelligent solution to the various issues related to the formulation of hydrophobic drugs with limited solubility in gastrointestinal fluid. Although the potential utility of SETs is well known, only in recent years has a mechanistic understanding of the impact of these systems on drug disposition emerged. These in situ emulsion-forming systems have a high stability when incorporated in various dosage forms. SETs are being looked upon as systems which can overcome the problems associated with delivery of poorly water soluble drugs. An in-depth knowledge about lipids and surfactants that can contribute to these systems, criterion for their selection and the proportion in which they can be used, represent some crucial factors determining the in vivo performance of these systems. This article presents a comprehensive account of various types of self-emulsifying formulations with emphasis on their composition and examples of currently marketed preparations.O sistema terapêutico auto-emulsionante (SETs) fornece solução eficaz e inteligente para os vários problemas relativos à formulação de fármacos hidrofóbicos com solubilidade limitada no fluido gastrintestinal. Embora a utilidade potencial dos SETs seja bem conhecida, só recentemente se compreendeu, mecanisticamente,o impacto desses sistemas na disposição de fármacos. Estes sistemas de formação de emulsão in situ têm alta estabilidade, quando incorporados em várias formas de dosagem. Os SETs têm sido considerados como sistemas que podem resolver problemas associados à liberação de fármacos pouco solúveis em água. O conhecimento profundo dos lipídios e tensoativos que podem ser utilizados para estes sistemas e o critério para a sua seleção e proporção na qual eles são utilizados são alguns dos fatores cruciais que determinam o desempenho do sistema in vivo. Este artigo apresenta o relato abrangente de vários tipos de formulações auto-emulsificantes, com ênfase em sua composição e exemplos das preparações que são correntemente comercializadas

    Passiflora incarnata attenuation of neuropathic allodynia and vulvodynia apropos GABA-ergic and opioidergic antinociceptive and behavioural mechanisms

    Get PDF
    Background: Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocininduced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative activities in mice in order to examine possible underlying mechanisms. Methods: PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia. Results: GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide), palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency. Conclusions: These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed

    High Performace Liquid Chromtographic Determination of Nicardipine Hydrochloride in Human Plasma

    No full text
    A sensitive high-performance liquid chromatographic method was developed for the estimation of nicardipine hydrochloride in human plasma. Varying amount of nicardipine hydrochloride (2.5 to 150 ng/0.5 mL) and fixed quantity (100 ng/0.5 mL) of nifedipine (internal standard) was added to blank human plasma, and a single step extraction was carried out with ethyl acetate. The mixture was centrifuged, ethyl acetate layer separated, dried and reconstituted with 100 μL of acetonitrile. Twenty microliters of this solution was injected into a reverse phase C-18 column using a mobile phase consisting of acetonitrile: 0.02 M potassium dihydrogen phosphate (pH 4.0) in the ratio of 60:40 v/v and the eluents were monitored at 239 nm. The method was validated for its linearity, precision and accuracy. The calibration curve was linear in the range of 5-150 ng/0.5 mL of plasma and the lower detection limit was 2.5 ng/0.5 mL of plasma. The intra- and inter-day variation was found to be less than 2.5% indicating that the method is highly precise. The mean recovery of nicardipine hydrochloride from plasma samples was 89.6±2.60%. The proposed HPLC method was applied for the estimation of nicardipine hydrochloride in human plasma after oral administration of an immediate release nicardipine hydrochloride capsule (dose 30 mg) to 6 adult male volunteers. There was no interference of either the drug metabolites or other plasma components with the proposed HPLC method for the estimation of nicardipine hydrochloride in human plasma. Due to its simplicity, sensitivity, high precision and accuracy, the proposed HPLC method may be used for biopharmaceutical and pharmacokinetic evaluation of nicardipine hydrochloride and its formulations in human
    corecore