12,278 research outputs found

    Structural, optical and nanomechanical properties of (1 1 1) oriented nanocrystalline ZnTe thin films

    Get PDF
    Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young’s modulus obtained from loaddisplacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ∼0.4.Financial support in the form of fellowships to MSRNK and SK from the ACRHEM project of DRDO is acknowledged

    Oscillations and temporal signalling in cells

    Get PDF
    The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration, using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show "ultradian" oscillations, with time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NFkB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour

    The dynamics and control of large flexible space structures, part 7

    Get PDF
    A preliminary Eulerian formulation of the in-plane dynamics of the proposed spacecraft control laboratory experiment configuration is undertaken when the mast is treated as a cantilever type beam and the reflector as a lumped mass at the end of the beam. Frequency and mode shapes are obtained for the open loop model of the beam system and the stability of closed loop control systems is analyzed by both frequency and time domain techniques. Environmental disturbances due to solar radiation pressure are incorporated into models of controlled large flexible orbiting platforms. Thermally induced deformations of simple beam and platform type structures are modelled and expressions developed for the disturbance torques resulting from the interaction of solar radiation pressure. Noise effects in the deterministic model of the hoop/column antenna system are found to cause a degradation in system performance. Appropriate changes in the ratio of plant noise to the measurement noise and/or changes in the control weighting matrix elements can improve transient and steady state performance
    • …
    corecore