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ABSTRACT

A preliminary Eulerian formulation of the in-plane dynamics of

the proposed SCOLE configuration is undertaken when the mast is treated

as a cantilever - type beam and the reflector as a lumped mass at the

end of the beam. Frequencies and mode shapes are obtained for the

open loop model of the beam system. The inherent time delay due to

actuators is taken into consideration to analyze the stability of

closed-loop control systems by both frequency and time domain techni-

ques. Environmental disturbances due to solar radiation pressure are

incorporated into the previously developed models of controlled large

flexible orbiting platforms nominally oriented along the local verti-

cal (with the major surface normal to the orbital plane) or oriented

with the major surface lying in the local horizontal plane. For ex-

tremely flexible platforms the need to redesign previously synthesized

control laws is indicated. Thermally induced deformations of simple

beam and platform type structures are modelled and expressions developed

for the disturbance torques resulting from the interaction of solar

radiation pressure. Such thermal deformations may give rise to larger

disturbance torques than the interaction of solar pressure with the

vibrating structure (ignoring the thermal distortions). Noise effects

in the previously designed deterministic model of the Hoop/Column

antenna system are found to cause a degradation in system performance.

Improved transient and steady state performance can be obtained by

appropriate changes in the ratio of plant noise to the measurement

noise and/or changes in the control weighting matrix elements.
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I. INTRODUCTION

The present grant extends the research effort initiated in pre-

*
vious grant years (May 1977 - May 1983) and reported in Refs. 1-9 .

Techniques for controlling both the shape and orientation of very

large inherently flexible proposed future spacecraft systems are being

studied. Possible applications of such large structures in orbit in-

clude: large scale multi-beam communication systems; earth observa-

tion and resource sensing systems; orbitally based electronic mail

transmission; and as orbital platforms for the collection of solar

energy and transmission (via microwave) to earth based receivers.

This report is subdivided into seven chapters. Chapter II pre-

sents a preliminary development of a two dimensional model of the

rotational equations of motion for the proposed Spacecraft Control

Laboratory Experiment - (SCOLE) . This development is based on the

expansion of the Eulerian moment equations assuming the Shuttle and the

reflector are rigid bodies and modelling the mast as a flexible canti-

lever type beam. A preliminary calculation is performed to obtain the

frequencies of the fundamental and first few in-plane bending modes as

well as the corresponding modal shape functions.

In the following chapter a preliminary review is given of stability

techniques that can be applied when time delays are present in the im-

plementation of the control inputs.

*References cited in this report are listed separately at the end
of each chapter.
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Both time domain and frequency domain techniques are described with

emphasis placed on applications to large order systems typical of

large space structures. The major question to be answered is whether

marginally stable or oscillatory systems could be stabilized by using

delayed feedback techniques.

Chapter IV is based on a paper to be presented at the Fourteenth

International Symposium on Space Technology and Science and examines

the control of a thin orbiting flexible square platform in the presence

of solar radiation. The disturbance torques resulting from the inter-

action of solar pressure with the vibrating plate analog of the plat-

form are modelled and incorporated in the dynamic model of a square

plate nominally oriented along the local vertical with the major sur-

face normal to the orbital plane and also nominally oriented with the

major surface lying in the local horizontal plane. Transient responses

and control requirements are examined for both nominal orientations.

The effect of environmental disturbances on the dynamics of large

orbiting systems is extended in Chapter V to also include solar heating

effects. A paper to be presented at the 1984 AIAA/AAS Astrodynamics

Conference forms the basis of this chapter. The evaluation of the

effect of solar radiation pressure on flexible beams and plates which

are subject to thermal deflections (in addition to vibrations) is the

objective of this paper. For very flexible system where the previously

developed control laws may not be adequate to account for environmental

disturbances, the versatility of the linear quadratic regulator techni-

ques provided by the ORACLS software package can be utilized to
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redesign the control strategies in order to reach a compromise between

reducing the excess vibrational and rotational energy while at the

same time maintaining the control effect at an acceptable level.

Partial support from this grant was provided for one of the graduate

research assistants during the Summer of 1983 only. This research was

continued during the 1983-84 academic year sponsored by the University,

and the results are presented in Chapter VI in the format of a paper

presented at the recent 1984 AIAA Mid-Atlantic Regional Student Con-

ference. In this paper, the work previously initiated during the last
9

grant year analyzing the dynamics and control of the proposed Hoop/

Column orbiting antenna system is extended to incorporate the effects

of both plant and measurement noise in the system. The results de-

scribed here are based on co-located actuators and sensors assumed to

be located on the column, electronic feed, and also on the hoop. The

general degradation of the previously designed deterministic system is

attributed to the incorporation of the uncorrelated zero-mean white noises

assumed to be present in the plant and measurement sensors. The Kalman

filter algorithm of the ORACLS package is used to develop control laws

and simulate the estimate of the state in an optimal LQG manner. Studies

are included showing the effect of increasing the elements in the state

weighting matrix as well as varying the noise characteristics.

Chapter VII describes the main general conclusions together with

future recommendations. The effort described in Chapters II and III is

being continued during the 1984-85 grant period in accordance with our

proposal and subsequent discussions.
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II. MODELLING TECHNIQUES AND CONTROL SYNTHESIS FOR THE SPACECRAFT CONTROL
LABORATORY EXPERIENT - PRELIMINARY RESULTS

The transfer of large, massive payloads into Earth orbit is cur-

rently accomplished with considerable propulsive and control effort.

As a result, spacecraft designers must strive to minimize a large struc-

ture's mass. Consequently, many of the future spacecraft will be very

flexible and will require that their shape and orientation be controlled.

The problem of controlling large, flexible space systems has been the

subject of considerable research. Many approaches to control system

synthesis have been evaluated using computer simulations including a pre-

2 3
liminary synthesis of control laws for the proposed Hoop/Column System. '

Ground experiments have also been used to validate system performance

under more realistic conditions but based on simple structures such

as beams and plates. In a recent paper, SCOLE (Spacecraft Control Labora-

tory Experiment), Lawrence W. Taylor Jr. and A.V. Balakrishnan described

a proposed laboratory experiment based on a model of the Shuttle connected

to a flexible beam with a reflecting grillage mounted at the end of the

beam (Fig. 2.1). The authors stressed the need to directly compare

competing control design techniques, and discussed the feasibility of

such direct comparison. Concern would be given to modelling order re-

duction, fault management, stability, and dynamic system performance.

With this paper^ as a background, the purpose of the study proposed

here is to model the system in different phases where each successive

phase would represent a mathematical model successively closer to that

of the actual laboratory system.
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It is anticipated that this (multi-year) study would consist of

five parts, the first of which would consist of a literature survey

during which the investigators would familiarize themselves with dif-

ferent mathematical modelling techniques.

During the second part, the system would be successively modelled

as follows:

a) The Space Shuttle as a rigid body; the reflector mast as a flexible

beam type appendage; and the reflector as a rigid plate. The mast shape

functions are actually solved from the fourth order non-linear flexural

beam equation with different boundary conditions imposed on both the

Shuttle and grillage ends, b) Here the Space Shuttle would be treated

as a rigid body body; the composite appendage consisting of the flexible

reflector mast and also the continuous rigid reflector (grillage) could

be modelled using finite element techniques. Then the composite system

dynamics can be modelled using the hybrid coordinate technique which

involves sets of matrix equations describing the motion of the main vehi-

cle as well as that of any attached appendages. It is anticipated that

within the second part of this study these different mathematical models

would be developed in a form suitable for numerical simulation.

During the third part, each of these models could be directly com-

pared with the model proposed in the SCOLE paper , beginning with the

simulation of the open-loop system dynamics. The fourth part of the

effort would consist of the control law synthesis when the model can

be described by linear system dynamics - i.e., in response to small per-

turbations induced on the system about the nominal laboratory configura-

tion and orientation, or after a major slewing maneuver, to remove the
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remaining transients which exist in a neighborhood of the new equilibrium

orientation. Such a construction of control laws will probably be based

on the GRACLS software package. Strategies would be developed to con-

trol the shape and orientation of the beam/grillage.

First the controllability of the system could be examined based

on the graph theoretic techniques already employed for a similar analysis

of the Hoop/Column system , for different combinations of numbers and

locations of the actuators. Next, control laws can be constructed based

on the techniques of optimal control theory, and studies can be performed

comparing transient and control effort characteristics for a variety

of system parameters and weighting matrix elements.

Finally, the fifth part would focus on the slewing maneuvers to

accurately point the reflector at a specific target -in a minimum lapse

of time. For simple maneuvers (single axis) attempts would be made

to analytically determine the slewing control law; for more general maneu-

vers, numerical techniques would be implemented.

2.3



II. A Development of the Two Dimensional Model - (Eulerian Moment
Equations)

The SCOLE system is assumed to be comprised of three main parts

(Fig. 2.1):

i) the Space Shuttle Orbiter with its center of mass located at
point 0-, ;

ii) the mast, treated as a 130 ft long beam, connected to the
Shuttle at 02 and to the reflector at 0 •

iii) the reflector, considered to be a flat plate with its center
of mass at OA.

The preliminary analysis presented here started before it was speci-
Q

fied that the interface point between the mast and the Shuttle is at

Q!- Therefore, in what follows, a position vector Rj appears which de-
-»•

fines 0̂ 0,,, where 0^ is the assumed interface point.

In the following analysis, the angular momentum, of the entire system

is evaluated at point C^ and the dynamics include the lateral displacements

of the beam.

II. A.I Angular Momentum of the Shuttle with Respect to Point 0,

2.4



Consider a point, P, of mass, dm, at an arbitrary position in the

Shuttle such that 0,P = r. The elemental angular momentum of the mass,

dm, is given by:

oirn = r > ̂ .CR+ryj dfti
>-9)5*r]<im • (4.1)

The total angular momentum for the Shuttle is obtained by integrating

Eq. (2.1) over the entire mass of Shuttle as:

ff., = -
The first and second integrals appearing in the right side of Eq. (2.2)

vanish because the center of mass of the Shuttle is at point 0, .

Since r • j = 0, Eq. (2.2) takes the form:

(*-*)

where IIC is the Inertia tensor of the Shuttle at point 0, and toTo I t

'"

(">„ - 9) j.

II. A. 2 Angular Momentum of the Mast with Respect to Point 0,

de formed
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Consider here an element of the mast located at point, Pi, with

mass^dm. The elemental angular momentum of such an element is given

*>•• citf, =
K/O,

if one notes that *-* °» «-» Ok ,)
0,P, = ft,+ r 0 +q and I ^

0? = S+0^ J

then, Eq. (2-4) may be expanded according to:

H/0,

Q.(Â  M ^To ̂ 0>/ I <D ^s expressed using the relationship between
aiA i IJCo ^
the rate of change of a vector, w, in an inertial (R ) and rotating

(R-L) frames, i.e.

After substituion of Eq. (2.7) into Eq. (2.6) and integration term by

term, one can develop:

- 9 - *)5 ( R,. [(S+Jf) dm} - ^-(R+?,)U ( (i
' •'Mm J W »• Jib,
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II. A.3 Angular Momentum of the Rigid Reflector with Respect to
Point 0,

Let 0, be the center of mass of the reflector, and 0., the inter-

face point between the reflector and the mast. The distance, X, between

0- and 0, is constant since the reflector is assumed to be rigid, at least

for this analysis.

Let us now consider an element of mass, dm, of the reflector lo-

cated at an arbitrary point, P™. The elemental angular momentum of that

element of mass can be expressed as :

dH
df

dm,

(XP- and 0^2 can be expressed as:

0̂  r ST. 4 *?i H- X jfcj •»• sc
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Eq. (2.9) may be expanded according to

•* «-^ . . A v I

( 2.11)

Once more, ft + §i -^ R*-* (X^ ) tj j^o is

expressed using Eq. ( 2 . 7 ) : d v J p l - c( uTJ _. ??**/- x"\kT

at '«-"a «
After substitution of Eq. (2.7) into Eq. (2.11) and integration term by

term over the entire mass of the reflector, one arrives at

dt

where I2r is the moment of inertia of the reflector about the j axis

taken at point 0,.
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II. B.I Moment Equation

The angular momentum of the entire system about 0, is obtained

by summing the angular momentum of each part about 0, , i.e.

HT/O, = <;
 Hi/0,

 (2-13)
The moment equation

— HT/0 I = N (2.i4)
dt ( *S2o

where N is the sum of all the enternal torques, acting on the entire

system, about an axis through point 0..

At this stage of the analysis, it is assumed that the center of

mass of the Shuttle moves in a circular orbit, ie.

d l?i & i "Z?isLrCI — JC L = O (2.15)
clV Is, '£

Taking into consideration the coincidence between points 0, and CL ,

Eq. (2.14) is expanded using once more Eq. (2.7) and the following

result is obtained:

A

Jva

N-5 = N,

- I& 8
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+ **fifi±4)l

.16)
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II. B.2 Expression for q

In the moment equation, Eq. (2.16), one notices integrals involving

->•
q, the transverse displacement vector, and its first and and second deriva-

tives with respect to time. It is, therefore, necessary to develop an ex-

-»•
pression for q.

II.B.Z.i Relation between q(x,t) and y(x,t)

Consider the beam in its deflected configuration.y(£,t) is the

deflection of the reflector-end of the mast at an arbitrary time t;

y(x,t), the deflection of an arbitrary point on the mast at the same

time.
A /\

From Fig. (2.1), kj_ • k2 = cos a (2.17)

Assuming a small, tan a can be expressed as

(2.18)

2.11



From Eq. (2.18) one derives

or

II.B.Z.ii Evaluation of y(x,t)

Assuming separability of the variables, the beam equation,_

is solved to yield solutions of the form:

where
f(t) = E sincot + F cosGOt with GO = frequency of the vibration

and 4> (x) = A cosgx + B singx + C coshBx + D.sinhgx

When the following boundary conditions are assumed:

a) y(0,t) = 0 ; b) y'(0,t) = 0

c) El y"' (2,,t) = -Mr y(£,t); d) El y"U,t) = 0

where

3"it
these can be expressed in the form:

A+ SB =o |
A + TB =o]

k "

T T.

A

.B.

0

0

(2.19)

(2.20)

(2.21)

(2.22)

(2,23)

(2.24)

(2.25)

(2.26)
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where M
a = singX, - sinhSfc - — - S (cosBH - cosh62,)pA

"r6 = -cosQH - coshBX, - — 8 (singJl - sinhBJl) (2.26)
pA

Y = cosg£ + coshB£

a = sinB£ + sinh62
2

"EI
(2.28)

Q

For the SCOLE system, the following parameters have been supplied :

pA = 0.09556 slugs/ft

El = 4. 0x10 7 lb-ft2

Mj. = (400/32.2) slugs

I = 130 ft.

For non-trivial solutions for A and B, det C must vanish. The

values of 3 for which det C = 0 are computed and substituted back into

Eq. (2.28) to obtain the frequencies of the different vibrational modes

(Table 2.1).

The same values of B are substituted into $ (x) , (Eq. 2. 23) which is

normalized with respect to its maximum value and the normalized mode

shapes plotted (see Table 2.1 and Figs. 2.2 - 2.6). Note that the ranges

of frequencies obtained in Table 2.1 are higher then those prevously pre-

sented in the April 13, 1984 oral presentation due to previous inconsis-

tencies in dimensional analysis of some physical units.
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o Center of the Earth

Fig. 2.1. SCOLE System Geometry in the Deformed State (2-D)
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TABLE 2.1

Values of S and Natural Frequencies (HZ)
for the First 8 In-Plane (Pitch) Bending Modes

S_ ni (Hz)

1.874599 .677828

4.6929 4.245

7.8519 11.884

10.997 23.3128

14.1309 38.4933

17.276 57.5283

20.4229 80.4045

23.555 106.958
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III. STABILITY OF LARGE SPACE STRUCTURES WITH INPUT DELAYS

The linear equations of motion of any large space structure can

be developed in the standard state space form as:
•

X(t) = AX(t) + BU(t) (3.1)

where

X = nxl state vector representing attitude angles, modal
coordinates for vibration problems, etc.,

U = mxl control vector

A = nxn system matrix

B = nxm control influence matrix.

Using modern control theory, a state variable feedback control law of

the form
U(t) = -KX(t) (3.2)

can be developed by proper selection of the feedback gain matrix, K,

such that system (1) with coritrol will exhibit required characteristics

in terms of transient response, pole location or some performance under

optimization.

One of the main characteristics of large space structures is the

large value of n (in the range of 100*s). This large value of n will

dictate the use of on-board computers to evaluate u at every instant

of time. In theory it is assumed the u at time t= t. can be instan-

taneously evaluated' using X's at t = t^. In reality there will be a

finite time lag between the determination of the X's and the realiza-

tion of the corresponding U's. Taking into account this delay, the

equations of motion with control can be written more realistically as:

•

X(t) = AX(t) - BKX(t-T) (3.3)
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The delays considered here may as well account for actuator delays,

control system delays, etc. in addition to computational delays.

In this report, a preliminary investigation has been carried

out to study the stability of the control law designed without taking

these delays into consideration.

III.A Stability Analysis - Time Domain

Following the analysis developed in reference 3.1, the system

given by equation (3.3) is asymptotically stable if and only if

- y(A) > || B j| (3.4)

where y(A) = largest characteristic root of — (A+A )

|JB || = square root of the largest characteristic root
of B*B

A",B are conjugate transposes of A and B.

This stability criteria can be extended to composite linear systems

(since mathematical models of large space structures can be viewed

as composite systems, as will be demonstrated later) as follows:

The system equations can be written as

X±(t) = AiX±(t) + BiU±(t) (3.5)

i = 1,2, ...m
m

with U,(t) = I C-.X.(t-T) (3.6)
j=l J J

X^ is an n(i)xl state vector

U. is an £(i)xl control vector.
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The closed loop equations can be written as:
. m
X±(t) = AjX^t) +.Z1 B..C X.(t-T) (3.7)

After identifying the following matrices as:

M = Diag [y(Ai)]

N-n..

where n.. = || B.C..||, i=j

the stability of the composite systems described by equation (3.5) with

the control given in equation (3.6) can then.be defined as follows:

The system (3.5) is asymptotically stabile if and only if any one

of the following conditions is satisfied:

(1) aJ.1 the leading principal minors of the matrix, - (M+N), are
positive

(2) -y > P(N) where y = max y(A.)

and P(N) denotes the Perron root of the matrix, N.

(3) -y > | | N | j .

The Perron root of a matrix is defined as follows:

Let A = (a..) be an nxn matrix with all a..-> 0. Then A has a

positive eigenvalue, p, of multiplicity, one, with p > |X.j for all

the other eigenvalues of A. This eigenvalue, p, has an eigenvector

all of whose components are positive. Then p is known as the Perron

root of the matrix.
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The stability criteria can be extended to the study of large

space structures by identifying the cooresponding matrices as:

A.
0

2
-0).

0 0

-P.: 4 ~k,- ^

where u). = i modal frequency

1 - o»t
U(A±) if o < 1

y(A±)
U). - 11 if OK > 1

"ij

So the M and N matrices are given by:

.2 2

M =

1-0) ,

N

or

2 2
'nl nl

1 - um or

2 2fc i * £•. + k.in in

2 . , 2p + k*nn nn

m
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With the application of any one of the three stability conditions

it can be concluded that the system can not be stable under a delayed

input as the original system without feedback is an oscillatory

system in the case of large space structures. In the literature

[Ref. 3.1 and Ref. 3.3] it is concluded that for systems with delayed

inputs to be stable, the systems without these delays must be stable.

No comments were made on the systems which are originally marginally

stable. This preliminary investigation shows that even the oscillatory

systems whose state variable feedback control laws are designed without

taking delays into consideration in the model may not be stable.

This preliminary conclusion has led us to examine other forms of

stability considerations for systems with input delay. In the following

pages, Routh-Hurwitz stability criteria as applied to delay systems will

be considered for the case of the large space structures.

III.B Stability Analysis - Frequency Domain:

In the literature [Ref. 3.2 and 3.3] the stability analysis in the

frequency domain is carried out either by approximating e s by a rational

function in s or evaluating the. unknown parameters such as feedback gain,

etc. such that stability is assured with the delays present.

The stability analysis in the frequency domain using Routh-Hurwitz

criteria is performed as follows:

The characteristic equation -of the system described by equation

(3.3) is written as

determinant of [SI-A-Be~Ts] = 0 (3.8)
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For the system (3.3) to be asymptotically stable equation (3.8) must

have all the roots in the left hand side of the s plane. Equation

(3.8) is a polynomial of infinite degree. One way to approximate

~TSequation (3.8) is to replace e by a rational function of the type

-TS 1 - Ts ,,, «.e = TTTS- (3-9)

where t = i '(tan'1 tfl + K £ )
W K- 0 , 1 , 2 ! . . . (3'10)

s*.

with (0 being the root of equation (3.8) and equation (3.11) given below:

|SI - A - B 1 - Ts2 |=0
1 + Ts U'11J

The maximum delay that can be tolerated by the system can be obtained

from the relation

hmax ^ mjn {-£- tan'1 (U.T.)} (3.12)

where to. are all the roots of equation (3.11) and T. are the corresponding
values of T.

f

This technique can be applied to systems of moderate dimensionality.

For large space structures the determination of the range of T for which

the roots of equation (3.11) won't cross the imaginary axis into the

right hand side of the s plane may become computationally prohibitive.

In Reference 3.3 stability analysis in the frequency domain with

delay is approached in a slightly different manner. The characteristic

equation of a system with delay is written as

.-« - 1
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where K is the gain
N(s) is the numerator polynomial
D(s) is the denominatcr polynomial

A preselected value of s (o~+ju)) which gives the required damping and

frequency for the closed loop system and the corresponding values, K,

and some other adjustable parameters of the system are evaluated. It

is clearly stated in reference 3.3 that this analysis is valid only for

systems which are stable without the feedback. The marginally stable

systems are not considered.

Conclusions:

The time domain approach is easy to implement for analyzing the

stability of systems with delay in feedback. The analysis shows that

marginally stable or oscillatory systems can not be stabilized using

feedback.

The Routh-Hurwitz criteria and the design approach of reference

(3.3) may become computationally unattractive for large space structure

systems which are characterized by hundreds of modes to describe vibrations

adequately.

At this stage, it is not completely conclusive that oscillatory

systems which characterize the vibrations of large space structural sys-

tems can be made stable or not with delayed feedback. A further litera-

ture survey and numerical computation will be carried out during the

grant period of 1984-1985 to arrive at definitive conclusions about the

stability of large space structures with input delays.
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IV. CONTROL OF AN ORBITING FLEXIBLE SQUARE PLATFORM IN THE PRESENCE OF
SOLAR RADIATION

Abstract

A mathematical model for the solar radiation forces and
moments acting on a square plate (platform) in orbit is
obtained by considering the plate mode shapes as combina-
tions of free-free beam shape functions. The moment ex-
pressions for a plate of arbitrary reflectivity coefficient
are obtained as a function of the solar incidence angle.
It is seen that only the first three flexible modes of the
plate generate a first order net moment about the center
of mass, and that the solar radiation pressure does not
influence the flexible modes of the plate for small ampli-
tude vibrations. The solar radiation disturbance model is
then included in the dynamic model of a square plate nom-
inally oriented along the local vertical and having the
major surface of the plate normal to the orbital plane.
The roll angle of the plate is seen to increase steadily
due to the solar radiation pressure whereas the pitch and
yaw motions oscillate with an amplitude of approximately
0.2 degrees for a 100m square thin aluminum plate in syn-
chronous orbit. To control the shape and orientation of
the plate two point actuators are assumed - one whose force
axis is normal to the plane of the plate, the second with
a force axis in the plane of the plate. The control law
and the feedback gain values are obtained based on linear
quadratic Gaussian methods.. Transient responses and control
requirements are simulated for local vertical and horizontal
orientations.

1. Introduction
Proposed future applications of large space structures require control of the

shape and orientation of the structure in orbit. It has been shown previously
(Ref. 1), considering a long, thin and uniform beam, that the principal environmen-
tal disturbance acting on these structures could be due to the solar radiation pres-
sure. In the present work the dynamics of a more import/.-.nt basic structure, namely,
a thin, homogeneous and flexible square plate exposed to solar radiation disturbance
will be considered. The force and moment expressions as given by Karytnov (?.ef. 2)
will "be used to obtain the expressions for solar radiation disturbing forces and
moments acting on the free-free square plate in orbit. The dynamics of such a plate
nominally oriented along the local vertical was considered earlier, disregarding the
environmental disturbances (Ref. 3). In the present study it is proposed tcreconsi-
der the dynamics of the plate nominally oriented along the local vertical/horizontal
with the solar radiation force and moment expressions included in the dynamic model.

The mode shapes and the frequencies of the plate are obtained using the finite
element program, STRLTDL (Ref. 4). To obtain expressions for solar radiatior. forces
and moments, it is convenient to express the mode shapes of the plate as a combina-
tion of the mode shapes of a free-free beam (Ref. 5). The first five nodes of the
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plate will be considered for study here. The plate is assumed to have only small
transverse vibrations, so that the shadowing of the plate due to any deflected part
of the plate can be neglected. The small deflection assumption also allows the
superposition of the beam mode shapes in representing the deformations of the plate.

2. Solar Radiation Forces and Moments Acting on a Thin Homogeneous Flexible Square
Plate _
Fig. 1 shows a square plate exposed to solar radiation. Let n denote the out-

ward unit vector normal to the surface, ds, and let T be the unit vector in the
direction of solar radiation denoted as

T=a T + b J + c k" (1)
o o o

The direction cosines of T, namely, a , b and c , can be expressed in terms of the
solar incidence angles, 8. and ij>., (defined in Fig. 1) as

a = sin 9. cos ty . ; b = sin 9. sin. ̂ . ; c = cos 9. (2)

Then, the solar radiation force, F , and the moment, N , on a completely absorbing
surface are given by (Ref . 2)

? = -h T / Y-n ds (3)
a o s

and N" = h ? x / R (?-n) ds (4)
a o s

—6 2
where, h = 4.64x10 Nt/m is a constant for near earth space structures. The
integration over the area, s, is bounded by the condition

•T«n" 10 (5)

The force, F , and moment, N > acting on a completely reflecting surface can be
developed as (Ref. 2)

? = -2h / n Oc"-̂ )2 ds (6)
_r ° s __ _ _

and Nr = 2hQ / nxr (T-n)
2 ds (7)

s

where, R is the position vector of ds with respect to the center of mass of the
plate. For a surface with an arbitrary reflection coefficient, e , the force and
moment expressions become (Ref. 2):

F =?+ e (?-?); N = N" + e (N -N" ) (8)er a r r a er a r r a ^

The shape function of a. rectangular plate can be represented as a product of
the two beam functions given by (Ref. 5), considering only the transverse vibration,

*

Zm,n (x»y) - 9
n<x) *»<*> <9>

9 and fy are the free- free beam shape functions given by

9 (x) = a (sinfl x + sinhft x) + cosQ x + coshfi x ; for n = 2,3,4 .... (10)n n n n n n

where, an = (cosĴ -cosĥ )/ (sinhftn~sinQn) ; Sfx) = i|; (y)
and 9n(x) = l-2x.for n=l n

= a constant for n=0
For a square plate, certain special modes which are combinations of the r.odes of a
rectangular plate are of interest (Ref. 5). The frequency expressions for such
modes are also given in Ref. 5. The first five modes of a square plate in which the
secc.id and third modes represent special combinations of "beam modes" (7ig. 2) are
considered in the present study.



A unit normal to the surface, n, is given by,

n = ani + b,j + c,k = [(i|)(d0/dC)i + 6(dt|;/dn) T-k)]j. j. j.
(11)

f|,O are non-dimensional coordinates in the x,y,z directions, respectively.)
The position vector, R, is represented as,

R = (?- --|) T + (n- j) I + z k (12)

Eqs. (1), (11) and (12) are substituted into Eq. (4) and then the resulting inte-
grals are evaluated to obtain the expression for the moment acting on a plate
having a completely absorbing surface as,

¥a = -hoA
2[{bos3-co(s2-s4/2)} I + {co(S;L-s4/2)-aos3} J

+ {ao(s2-s4/2)- bo (S;L-s4/2)} k ] (13)

where, s. = / Cs d£dr| s_ = / r\s d£dn s_ = / Cs d^df)
1 C 2 . C J C

s s s

s. = s.
4 s c c o m dt, o n dr) o

The integrals s1 to s, can be evaluated analytically. The moment expressions are
obtained for the first five plate modes (Fig. 2) by evaluating s.. to s, for com-
binations of corresponding (m,n) modes and are given as,

_ h £2 _ _
N = -|- [a c I - b c J + (b2 - a2)k] zn (for mode I)a 3 oo oo o o 1

= h 5.2c [b I + a J] z_ (for mode II)o o o o 2

= h &2c [b I - a J] z. (for mode III)o o o o j

= 0, (for modes IV and V) (14)

where, z . z and z are deflections at one corner of the plate associated with
the I, II ana III modes, respectively. _

The moment due to solar radiation pressure, N_, acting on a completely re-
flecting surface is obtained by substituting Eqs. (11), (12) and (1) into Eq. (7).
The resulting integral is simplified to obtain the expression,

Nr = 2hQ / C(a2C-a3n')+ (â '-â ) + (â '-â 1 )k] s^Cdn (15)
S

where, £'= £ '- 0.5 and n1 = n - 0-5
Eq. (15) involves complicated integrals and to find an analytical solution is
very difficult. Instead, a numerical evaluation of the integrals involving dif-
ferent nodes are carried out and the results are shown in Fig. 3. The plate
dimension is considered to be lOOmxlOOm and the deflection at the corner of the
plate for each mode is assumed to be z-^ = z2 = z., = 1.0m. Similar results are
also obtained for a plate having a completely absorbing surface using Eq. (14).
The solar incidence angle, 6.̂ , is varied from 0 to 90°, with ^ = 0. Only the
first three modes give rise to appreciable moments for both the completely ab-
sorbing and completely reflecting surfaces. The magnitudes of the moments are
seen to be an order of magnitude higher (2xlO~^Nt-m) for a completely absorbing
surface as compared with the case of a completely reflecting surface (10~3 >Jt-m) .
The moments due to modes II and III, and for both completely reflecting and com-
pletely absorbing surfaces, can be visualized as extensions of the result obtained
for the case of the beam (Ref. 1).



Based on the numerical results shown in Fig. j, in which tj^ is varied from 0
to 90° (not shown) the moment expressions for a completely reflecting plate can
be written as,

N,. = h,c (a i-b j) z, (for mode I)
r 1 o o o ±

= h0c (b i-a j) z0 (for mode II)
L o o o Z

= h2CQ (boT-aoJ) z3 (for mode III) (16)

.where, h, = 3.25xlO~4 and h2 = 1. 09x10"
 3

Eq. (16) is found to be valid for magnitudes of z^ to z-j up to 0.01£. The moments
jibout the x,y and z axes are obtained by collecting the coefficients of i, j and
k, respectively, from Eqs. (14) and (16) as,

Nax = h3 {(ao/3)zl + bo(22+z3)} '• Nay = ̂ 3 {(bo/3)zl + bo(z3-
z2)}

N = (h_/3) (bj-aj)z. ; where h- = h £ 2 c (17)
cLZ J (J. O J. J O O

Nrx = Go{hlVl + h2bo^z2-z3)} ; Nry = -co{hlbozl + Vo(z2-
23) }; Nrz = ° (18)

Eqs. (17) and (18) are now substituted into Eq. (8) to obtain the moment acting on
a plate x^ith a surface of general coefficient of reflectivity, e .

3. Modal Forces Due to Solar Radiation Pressure
The effect of the disturbance on the generic mode is obtained by evaluating

the integral (Ref. 6).

En = / z (x,y) k'dF" (19)

where, dF represents the force due to solar radiation pressure per unit area. Also

Eq. (3) is .substituted into Eq. (19) and after evaluating the resulting integrals,
E is found to be equal to zero for all modes of the plate. Eq. (6) is used in
Eqf (19) to get

Enr = 2ho f ̂ (aoa1+bob1+co)/(a2+b2+i)] dCdn (21)

2 2 2
The slopes, d9 /d£ and dij; /dn, are assumed to be very small so that a,+b,+c, = 1.
Thus, the integral in Eq. (21) can be easily evaluated to show that Enr is also
equal to zero for all modes of the plate. Hence, the solar radiation pressure
does not give rise to any generic force. The results obtained can now be used in
the dynamic model of a flexible plate in the orbit.

4.4



4. Effect of Solar Radiation Pressure on a Plate Nominally Oriented Along the
Local Vertical
• The major surface of the plate is assumed to be perpendicular to the orbital

plane (Fig. 4). From the general formulation of Refs. 3 and 5, the equations of
motion of the structure are obtained, under the assumption that the transverse
deformations are small compared to the characteristic length of the plate. The
linearized equations of motion are given by (Ref. 3),

;.
e -

n

..
• 2 ' *

-2u> i + w i|) + N /J ; 4> = w ^c c xx c
7I- ($l /w ) e =0n c n

2
+ N /J ; 8 = -3u) 9y y c + N /Jz z

(22)

where i|>, cj>, and 8 refer to the yaw, roll, and pitch modes, respectively, 0) is the
orbital angular rate, J^ is the n1-" modal frequency, en is the non-dimensional modal
amplitude, and J are the principal plate moments of inertia.

The roll and yaw equations of motion are coupled to each other and the charac-
teristic equation shows a double pole at the origin indicating instability in the
roll-yaw motion. However, for an initial condition of iKO) = 4>(0) = 0, the roll and
yaw motions will not build up. To study the effect of solar radiation disturbance,
a 100m. square plate whose fundamental frequency is ten times the orbital frequency
is considered. Only the first three flexible modes are included in the dynamic model

with initial conditions of 0.01 in each mode. The transient response of the plate
under the influence of solar radiation pressure is shown in Fig. 5. The torque
about the normal to the plate due to the first modal amplitude acts in one direc-
tion only (Eq. (14) for 4̂ =0: as the solar incidence angle changes in the orbit,
it is seen that the cyclic contribution due to Nax averages to zero. This torque
induces a steady drift in the roll angle (= 1.5° in 6 orbits). The yaw motion is
seen to be oscillating with a very small amplitude (0.3°). The solar radiation
pressure disturbance also induces a small amplitude (0.03°) pitch oscillation.
The modal oscillations (not shown) are unaffected in the presence of the solar
radiation disturbance. The magnitude of the pitch, roll, and yaw angular motions
due to the solar radiation pressure are small because of the stabilizing gravity-
gradient forces acting on the plate.

Active control of the flexible platform nominally oriented along the local
vertical may be accomplished by using two reaction jets, f^ and f2, as illustrated
in Fig. 2. Actuator £2 ^s assumed to thrust normal to the undeflected plate, whereas
f-^ has its thrust axis. in the major plane and normal to one of the edges. Control
laws are synthesized based on linear quadratic Gaussian techniques (Ref . 7) . The
effect of including the solar radiation disturbance on the closed-loop dynaaic
response is illustrated in Fig. 6 where the initial conditions are identical to those
in Fig. 5. .For this case the solar disturbance is seen to have little effect on the
closed-loop response. The roll motion is now seen to be characterized by a damped
oscillation. .When the flexibility of this plate was increased (reducing the funda-
mental plate frequency to only 3 times the orbital rate) , it was seen that the sain
effect was to increase the control effort by about 10 percent.
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5. Effect of Solar Radiation Pressure on a Plate Nominally Oriented in the Local
Horizontal Plane . •
For this case the undeflected major surface of the platform is nominally per-

pendicular to the local vertical. Such a. structure could be gravitationally sta-
bilized by attaching a rigid light weight dumbbell at the center by a spring loaded
hinge which could also provide viscous damping (Fig. 7). The linearized equations
of motion for a plate connected to a two-degree-of-freedom gimballed dumbbell were
developed and a related stability analysis provided in Ref. 8.

The closed loop transient response for this system with initial modal dis-
placements in the first five flexible modes is illustrated in Fig. 8. For this case
the fundamental flexible modal frequency was reduced to three times the orbital rate.
The feedback gain values were obtained by the application of the linear quadratic
Gaussian method by taking the state penalty matrix, Q=100I, and the control penalty
matrix; Pv=I (I = appropriately dimensioned unit matrix) . The pitch and the yaw
motions are seen to be characterized by relatively large amplitude oscillations
(Fig. 8a) in the presence of the solar radiation disturbance. A second set of
feedback gain values is obtained by increasing the elements of the penalty matrix,
Q, corresponding to the pitch and yaw states. The resulting transient response
of the system is shown in Fig. 8b, for the same initial conditions as in Fig. 8a.
For this case, the controlled pitch, roll, and yaw motions are seen to be relatively
less sensitive to the solar radiation disturbance than for the case shown in Fig. 8a.
The effect of penalizing the pitch, roll, and yaw states more heavily is reflected in
the larger control effort required, which is about 10% greater than for the case shown
in Fig. 8a. .

6. Conclusions
The effect of solar radiation pressure interacting x<?ith a vibrating orbiting

thin plate is modelled. It is seen that only the first three flexible modes of the
plate generate a first order net moment about the center of mass, and that the solar
radiation pressure does not influence the flexible modes of the plate for small am-
plitude vibrations. In the absence of control, for a symmetrical homogeneous square
platform the solar pressure induces a steady angular drift about one of the (rigid)
body principal axis.

For the case of extremely flexible platforms, nominally oriented in the local
horizontal plane, it is seen that appreciable rigid modal amplitudes can be induced
due to solar radiation, even in the presence of both active and passive control.
For this situation, the versatility of the linear quadratic Gaussian technique can
be utilized to redesign control laws which provide a compromise between transient
performance and control effort required. .
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Fig. 7. Dumbbell
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(b) Q = diag [100.0] R = diag [l.O]
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V . DYNAMICS AND CONTROL OF ORBITING
FLEXIBLE BEAMS AND PLATFORMS UNDER THE

INFLUENCE OF SOLAR RADIATION AND
THERMAL EFFECTS

Abstract

Expressions for thermal deflections of uniform
chin beams and plates exposed to solar heating are
obtained as a function of the properties of the
material and che solar incidence angle. The major
effect of the solar radiation pressure interacting
vith the thermally deformed structure is found to
give rise to disturbance moments on the structure.
The thermal deformations of the structures are
assumed to be within 0.12 of the characteristic
length of the structure. With the assumed thermal
deformations, the resulting uncontrolled transient
responses of these geosynchronous orbiting struc-
tures to the solar radiation pressure induced dis-
turbances are simulated. The resulting rigid modal
oscillations are found to be an order of magnitude
larger than for those cases previously considered
in which only the solar radiation pressure effect
on vibrating structures was treated. Modifications
of control laws and/or the feedback gain values are
considered in order to improve the transient re-
sponse characteristics under the thermally induced
disturbances.

I. Introduction

The major environmental disturbances on pro-
posed orbiting large space structural systems are
expected to be due to the solar radiation pressure
and solar heating effects. The dynamics and con-
trol of a flexible beam and a flexible plate in
the presence of disturbances due to the solar radi-
ation pressure acting on the vibrating structure
were considered previously.-'-'̂  it was seen that the
uLajuc affect o£ the solar radiation pressure inter-
acting vith an elastically deformed (vibrating)
orbiting structure was to produce moments on the
structure resulting primarily in rigid modal oscil-
lations. For the case of extremely flexible struc-
tures the amplitudes of these modes may be appreci-
able, even in the presence of both active and pas-
sive control!"-' In some situations the control
laws previously developed by ignoring environmental
effects may have to be redesigned. For simple lo-
wer order systems feedback gain values may be suit-
ably adjusted; however, for large order systems the
versatility on the linear Gaussian technique can be
used to redesign control laws which provide a com-
promise between transient performance and the re-
quired control effort.1"3

Another important aspect of the environmental
effect is the thermal gradients resulting in the
structure due to the solar radiation heating. The
deformations caused by the thermal gradients can be
very large resulting in the dynamic instability of
the structures.̂ "6 Furthermore, the solar radia-
tion pressure interacting with the thermally de-
formed structure gives rise to another form of en-
vironmental disturbance. The deformations caused
by the solar heating depend on the thermal pro-
perties of the material and the geometric shape of
the structure. Selection of materials with desired
thermal properties and careful structural designs
are required to minimize the thermal deformations
of the structure to an acceptable level. The
thermal deformations of the structure will occur
as long as the structure is in the sunlit orbit
and the continuous removal of this deformation using
active control may not become practicable. The
thermal deformations will have to be minimized by
careful consideration of the thermal properties of
the material in the preliminary structural design
process. The objective of the present paper is to
consider the effect of solar radiation pressure on
the beams and the plates which are thermally de-
flected due to solar heating. (To the authors'
knowledge, this is the first attempt to incorporate
such effects into the modelling and simulation of
the dynamics of large flexible orbiting systems).
Motions of the beams and plates about: (i) the
local vertical orientation; and (ii) the local hori-
zontal nominal orientation (the latter carrying a
"rigid gimballed dumbbell to provide gravity sta-
bilization) will be considered for the study (Figs
1 and 2) .

Expressions for the thermal deflections of
beams and plates exposed to solar heating will be
developed. Subsequently, a mathematical model for
the solar radiation induced torque on the thermally
deflected structure will be obtained. The uncon-
trolled and controlled dynamics of the orbiting
structures will then be simulated by considering che
combined effect of the solar radiation pressure on
the thermally deflected and vibrating structure.
Modification of the control law and the feedback
gain values to control the shape and orientation
of the structure will be proposed, where required.
In this study, the statically induced thermal
deflections will be assumed small relative
to the characteristic structural dimensions. In
addition, the other major assumptions made here
are: (a) the reflected solar radiation by the
earth (albedo) can be neglected; (b) the inherent
time lags in the hear transfer process are very
small compared with the orbital period and ara
ignored; (c) the radiation from the edge surfaces
can be neglected; and, (d) the beams and plates
have uniform thickness and thermal properties re-
sulting ia a uniform temperature distribution.
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The effects of the Earth's shadow and local sha-
dowing due to another part of the structure are
not included in the study.

II. Equililbrium Temperatures of Thin Plates
and Beams

The cross section of a. thin plate (or a beam)
exposed to solar radiation is shown in Fig. 3.
The solar incidence angle, 3^, is taken to be a
constant during a small interval of time. During
this interval the surface facing the sun, su>
attains a temperature, Tj_, and the surface away
from the sun, s^, attains a temperature, T2- the
equilibrium temperatures, T, and T2, can be deter-
mined by vriting the thermal balance equations.
The total heat leaving the beam from the two
surfaces, su and s^, should be equal to the heat
received by the beam. 1 Therefore,

T4. ag G cos 81 (1)

where ,
£., and EZ are the emissivities of the sur-
faces, su and s, , respectively

a = Stefan-Boltzman constant
- 56.7xlO-12KW/m2 K*

os = absorptivity of the surface, su
G =» intensity of solar radiation = O.SKW/m2

The heat flowing through the plate, at equilibrium,
is also equal to the heat radiated from the sur-
face, S]_."

VT2 (2)

where ,
k » thermal conductivity (KW/m K) of the

plate material
t - thickness of the plate

Equations (1) and (2) can be rearranged as

tc/k)/T2

(asG cos - (Et/E2) T*

(3)

(4)

Eqs. (3) and (4) can now be solved to obtain
T^ and T, by assuming an approximate value of Ij_
or T2 an3 then through numerical iteration. As-
suming E^ • S, » 0.05 and dg - 0.2 (characteristic
of proposed supporting mast material for large
space structural systems), the temperature dif-
ference, dT » Tj_ - T2, is obtained as a function
of the solar Incidence angle, d^, and various
parameter ratios of k_ « k/tc, as shown in Fig. 4.
A higher value of kr indicates a larger value of
thermal conductivity and, hence, the temperature
difference between the two surfaces becomes
smaller. A plate of thickness 1 cm and made
of polyamide (k - 0.25xlO~3 KW/m K) will have a
ma-p-iimm temperature difference of 2.3°X. The
temperature gradient is found to vary approximate-
ly proportional to cos 3̂  (?ig. 4). Expressions
for deflections of the plate as a function of the
temperature gradient are developed in the next
section.

III. Pure Bending of Thin Plates and Beams°

Fig. 5 shows a beam of length, 1 and width, b.
The temperature of the aid-plane of the beam is de-
noted by Tn. The temperature of the surface facing
the sun, su, is then Ta + (AT/2), and the tempera-
ture of the surface, s t̂ is given by Tn - (AT/2).
According to the theory of beam bending analyzed
in Sef. 8, we have

d2z/dx2 = -(a /J )/ T y d A

where

(5)

z is the transverse deflection of the beam,

a = coefficient of linear expansion
J = moment of inertia of the beam about

the y axis

Eq. (5) is rewritten by evaluating the integral

d z/dx • - a (AT/t ) = a constant (6)

The expression for the thermal deflection is then
given by

- ae(AT/tc)xV2 (7)

The thermal deflection can be minimized by
selecting a material with a low coefficient of
expansion or by using a material of high thermal
conductivity. An increase in the thickness of
the plate will increase the temperature difference
(Fig. 4) and also increase the weight of the plate.
Hence, the parameter, tc, should be as small as
possible. The other important properties of ma-
terials not reflected in Eq. (7) are the density Q
and the cost of the aaterial as shown in Table 1.'
For a beam of length 100m and thickness 0.01m, and
made of polyamide (a low density and low cost ma-
terial) , the mjnrimiTm thermal deflection is found
to be approximately 7m. If the beam is made of
aluminum, the iMTriimim deflection would be about 2mm.
Once a tolerable thermal deflection is specified
the material can be selected to meet the conflict-
ing requirements of low density, high thermal con-
ductivity, and low cost. In the next section the
solar radiation pressure moment resulting from a
thermally deflected beam (also applicable to a
plate) is discussed.

TV. Effect of Solar Radiation Pressure on
Thermally Deflected Seams and Plates

The moment expressions obtained by Karymov
are used here to develop the solar radiation dis-
turbance model for thermally deflected beams and
plates. The solar radiation moments acting on a
completely absorbing_surface, Sa, and a completely
reflecting surface, Nr, are given by

1^,

Ha - hQ T x / (T -n) da

2hQ / nxR (7-n)
2 ds

(8)

(9)
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- " a i + b j + c k , is the incident solar
_ radiation vector
n * outward unit normal to the elemental
_ surface, ds
R • position vector of the surface element,

ds* relative to the center of mass
h =» solar energy constant = 4.64x10 5 St/m2.

a ,b ,c° = direction cosines of the incident solar
° ° radiation with respect to the directions

x,y,z, respectively

The integration over Che sunlit area, s, is
bounded by the condition, T'n<0. The moment on
a structure whose surface has an arbitrary co-
efficient of reflectivity, £r, is given by,

10

sr + e (N -H )..a rv r a (10)

The moment on a thermally deflected beam
whose surface completely absorbs all the incident
radiation is obtained (after evaluating the inte-
gral in Eq. (8)) as,

" ao co
(U)

where ,
the incident radiation is assumed to lie in
the x,y plane (bo=0)
b = width of the surface (b«l for a thin

beam)
deflection (from Eq. (7))= z

The -nairiTnimi deflection, 6O, can be obtained as a
function of 9. by selecting a function to repre-
sent AT in Fig. 4, and then by using the function
for AT in Eq. (7). The moment acting on a com-
pletely reflecting beam surface is obtained
through numerical integration, as,

Hr = -0.05 ao CQ &o 4 b hQ j (12)

The corresponding moment expressions for a plate
are obtained as

V° "°-05 co So *• b ho(V + a«J>

The moment on Che structural surfaces whose
coefficient of reflectivity is, £T, can then be
obtained by using 2q (10) as,

cl
(for a plate)

a c 0 H b
. 0 0 0
iror a oeam)

- °-05e]

(14)

forces on such structures can be obtained by using
a rigid dumbbell such that the resulting inertia
distribution provides the desired gravity forces.
A dumbbell may be attached to the main structure
through a hinge which could provide both torsional
stiffness and damping. The dynamics of the proposed
dumbbell stabilized beam and plate (Figs, la and
2a) was considered in Reference 12. Here, the
study is extended to consider the disturbances
resulting from the interaction of solar radiation
pressure with the chermally deformed structure.
The disturbance resulting from che solar radiation
pressure on the dumbbell will be neglectad, since
the dumbbell would have a small surface area com-
pared with che main structure. The modified con-
trol laws and gain values developed in References
2 and 3 will be used co obtain closed-loop tran-
sient responses of these structures by incorporat-
ing the disturbance expressions (Eq. (14)) into
the structural models of che beams and
plates. 1-3,11.12 -nis ̂gxî ^ thermal deflection
for each case is assumed to be 0.001Z, based on
the calculation of deflections for a 100m long,
0.01m thick beam made of polyamide and aluminum,
respectively (Table 1). The beams and plates are
assumed to have a fundamental frequency equal to
ten times the orbital frequency with che orbital
frequency corresponding co a geosynchronous orbit.
Initial conditions are assumed to be zero for all
the modes in order to highlight the chermally in-
duced disturbance effect. For those cases in which
che transient responses appear co be unacceptable
further modifications in the control law and/or
the gain values are proposed.

7.1 The Beam Along the Local Vertical

The effect of the thermally induced distur-
bance on che pitch motion of the beam is shown in
Fig. 6(a). The disturbance (without control) has
no effect on the flexible modal oscillations and
hence these are not depicted in che figure. Ic is
seen that the pitch response has a imnrimum ampli-
tude of 2.4 degrees as a result of Che disturbance.
Application of the previously developed control law
and the gain values2 for the case of cwo actuators,
located at the beam center and at one of che nodal
points of the first symmetric mode, shows (Fig.
6(b)) pitch amplitude oscillations of less Chan
0.24° amplitude. The peak control forces required
are only of che order of 10~3 St. for each actuator.
3y increasing the gain value proportional to the
pitch rate by a factor of 10, a further reduction of
the pitch amplitude to approximately 0.03° is illus-
trated (Fig. 6(c)). Correspondingly, the peak force
requirement in actuator number 1 increases to 0.01
St.

7. Dynamics and Control of 3eams and Plates
under the Influence of Solar Radiation
Disturbances due co Thermal Deformations

The dynamic models of beams and plates, for
both cases of orbital orientations (Tigs. 1 and Q
developed in References 11 and 12 are considered.
The nominal local horizontal orientation of beams
and plates represents a gravitationally unstable
notion due to Che unfavorable moment of inertia
distribution. Stabilizing gravity-gradient

7.2 The Dumbbell Stabilized 3eam

The transient response of che dumbbell sta-
bilized beam due co che solar radiation pressure
acting on che chermally deformed beam is shown in
.?ig. 7 (only che pitch aode is depicted). The
pitch oscillations are seen co have approximately
2.4° amplitudes in che absence of control. With
che application of the control law previously de-
veloped in Reference 3 (and indicated in the fig-
ure) , che amplitude of che pitch oscillations is
reduced co 0.24° (?ig. 7). The peak control force'
required is about 0.01 Mt.
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The gain values can easily be modified further to
meet any specific requirement on the pitch motion
of the beam.

V.3 The Plate Oriented Along the Local Vertical

The uncontrolled and the controlled transient
responses of the 100m square thin plate nominally
oriented along the local vertical and with the dis-
turbance caused by the thermal, deflection of the
plate are shown in Fig. 8. The same order of
magnitude thermal deflections are assumed here as
for the beam in sections V.I and V.2. The
pitch, roll and yaw rotations of the plate exceed
the Linear range in less than an-orbit. Applica-
tion of Che linear quadratic Gaussian control
technique with the penalty matrices, Q = 1001 and
R - I, results in a transient responses in which
steady state oscillations with amplitudes of about
0.02 radians are seen in all three rotational modes
of the plate (Fig. 3). Modal oscillations (non-
dimensionalized) in all the three flexible modes
remain within an amplitude of 10"̂  (10~3a). An
improvement in the transient response was obtained
by employing a split weighting state penalty ma-
trix (Q '<• 100 I, except for QU.l) » Q(2,2) -
Q(3,3) - 10,000) where the rotational modes were
penalized more heavily. The transient response
of the plate in the rotational modes for this
case is shown in Fig. 9. The steady state oscilla-
tions are reduced by an order of magnitude in com-
parison with Fig. 8. However, the peak control
forces increased from 7 Nt. to 12 St. The total
control effort required also increased by approx-
imately 60%.

7.4 The Dumbbell Stabilized Plate

The closed-loop transient response of the
dumbbell stabilized plate is considered. The
magnitude of the pitch,, roll and yaw angles are
seen to be within 0.02 radians in the absence o£
any solar radiation pressure induced disturbance
(Fig. 10(a)). For the same case, the effect of
the solar radiation pressure disturbance resulting
from the thermally deformed plate (<Scjj* O.OOUt,
I- 100m) is shown in Fig. 10(b). The pitch and
the yaw oscillations are seen to exceed the linear
range even with the control. The control effort
required (3x10̂  Nt. - sees.) was nearly ten times
more than that for the case without the disturb-
ance (Fig. 10(a)). The transient response charac-
teristics for this case are therefore unacceptable.

A redesign of the control is attempted with
penalty matrices selected as: Q » 10,0001 and
R » 1001. (Both the state as well as the control
are now penalized more heavily by increasing both
sets of elements by two orders of magnitude). The
transient response of the dumbbell stabilized plate
with this control is shown in Fig. 11. The pitch,
roll and yaw amplitudes are well within 0.02 radians
even in the presence of the disturbance. The peak
control force required is approximately 14Nt. in
both actuators (or an IMS value of a little less
than 30Nt.).

Thus, the thermal deformations of the struc-
tures can be of greater concern than che deforma-
tions of the structure due to structural vibra-
tions (considered in Refs. 2 and 3) in modelling
the disturbances arising from the solar radiation
pressure. This study shows che need to further
minimize thermal deformations (« 0.0015.) from
the view point of reducing the radiation pressure
disturbance effects. This can be accomplished
with cost and strength constraints primarily by
increasing the thermal conductivity.

Conclusions

The dynamics and control of thermally de-
formed orbiting beams and plates interacting
with the solar radiation pressure are studied.
The major effect of the solar radiation pressure
is found to result in net moments on the structure.
Modifications of control laws and/or feedback gain
values previously obtained by not considering the
thermal disturbances are suggested in order to
improve the transient response characteristics un-
der the thermally induced effects.

In general, the effect of solar radiation
pressure acting on the thermally deformed struc-
tures is found to be more important than the effect
of solar radiation pressure on the vibrating struc-
tures. In order to reduce the disturbances re-
sulting from the interaction of solar radiation
pressure with the thermally deformed structure,
further minimization of the thermal deformations
is recommended r
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table I. Properties of Representative Materials

Material

Graphite

Beryllium

Density

Polyamide

1.5x10

1.8xl03

2.7xl03

1.13x103

Expansion
Coefficient, a
(m/m°C) e

8.3xlO"5

3.5xlO~6

2-lxlO"6

25xlO"6

Thermal
Cond. K
KW/m- K

8.65xlO~3

12. 25x10" 3

28.8xlO~3

2. 45x10" 3

=-Cost
(?/Kg)

500

10,000

1.1

15

(m)

10"5

7

max thermal deflection of a plate vith sides equal to
100m and thickness equal to 0.01m.
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Fig. 9. Response of the Plate-Nominally Oriented Along the Local Vertical
Under the Influence of Solar Radiation Disturbance Caused by Thermal
Deflection of the Plate (6ch - 0.0011) l» 100m, û  - 10
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rad.
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rad.

-2.0
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e^O) - e2(0)= . . . . - £5(0) - 0.01

Fig. 10. Response of the Dumbbell Stabilized Plate Under the Influence of
Solar Radiation Disturbance Caused by Thermal Deflection of the Plate
(<5th_ - O.OOU) I = 100m, o^ = 10

0.02

••If
rad.

-0.02

0.02

9
rad.
-0.02

orbits

- - - Without Disturbance

With Disturbance

0.02

(Control Based on LQR. Q - 10,0001, R =» 1001)
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?c,Ht.

-30
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Fig. 11. Response of the Dumbbell Stabilized Plate Cnder
the Influence of Solar Radiation Disturbance Caused
by Thernal Deflection of the Plate (it̂  = O.OOli)
1 = 100m, M = 10
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VI. ANALYSIS OF A CONTROL SYSTEM FOR A LARGE
SPACE ANTENNA. SYSTEM IN THE PRESENCE OF PLANT

AND MEASUREMENT NOISE

Abstract

This paper considers the problem of controlling a stochastic linear

system by minimization of a quadratic performance index, appropriately

weighted in both the state variables as well as the control inputs. A

finite element model of a proposed large space structure - the Hoop/Coluon

structural system, is taken as the basis for the controls analysis. The con-

trol law is designed for a set of proposed actuator arrangements which in-

clude torquers and point actuators along the mast and a single actuator on

the hoop. Linear quadratic Gaussian techniques have been used for the develop-

ment of the control laws. The controls analysis is carried out assuming co-

located sensors and actuators. The sensor and plant noises are assumed to be

uacorrelated zero-mean white noises. Results indicate a general degradation

in the deterministic system performance due to noise characteristics. In-

creasing elements in the state weighting matrix does not bring as noticeable

an improvement in the transient performance as it did in the deterministic

case. A definitive improvement in the performance can be obtained by decreas-

ing the plant noise and either: (1) increasing the measurement noise suitably

or (2) increasing both the measurement noise and elements in the control

weighting matrix.

NOMENCLATURE

A = System state matrix
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B,BC = Control influence matrices

C = Control gain matrix ^.

E = Expectation/value operator

F - Filter gain matrix

FC = Control vector

G = Plant noise influence matrix

H = Observation matrix

I = Identify matrix

J = Cost function

K = Stiffness matrix

K^ = Solution of steady state control Riccati differential equation

K. = i generalized stiffness

M = Mass (inertia) matrix

m. = i generalized modal mass

P = Solution of filter matrix Riccati differential equation

Q N = Positive semi-definite state weighting matrix

q = modal co-ordinates

q,q = modal velocities and accelerations

R » Positive definite control weighting matrix

t = Initial, timeo

t- = Terminal time

U(t) = Vector representation of the control input

V(t) = Co-variance of measurement noise

v(t) = Measurement noise vector

W(t) = Co-variance of plant noise

w(t) = Plant noise vector

X(t) = State vector
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X(t) = State vector estimate

Y(t) = Measurement vector

Z = Matrix consisting of displacements and rotations in the nodal
points

4 = Modal transformation matrix

I. Introduction

Orbiting large flexible space systems have been considered for use in

future communications and other fields. As the size of the spacecraft in-

creases and the ratio of weight to area of the spacecraft decreases, flexi-

bility considerations become very important. This is in contrast to small

space structures which are assumed to be rigid. One such large flexible

space structure which has been proposed for future space missions is the

Hoop/Column antenna system.

The Hoop/Column antenna system , depicted in Fig. 1 in deployed con-

figuration .contains the deployable (telescoping) mast system connected to the

hoop by support cables under tension. The hoop contains 48 rigid sections

to be deployed by motor drive units. The desired shape of the RF relective

mesh is produced by a secondary drawing surface using surface control cables.

The reflective mesh is connected to the hoop by quartz or graphite stringers.

At one end of the mast the electronic feed assemblies are positioned, whereas

at the other end are the principal solar arrays connected to the main bus-

based control.

The finite element model (FEM) representation of the Hoop/Column antenna

system has been taken as the basis for the controls analysis.

The controls analysis of the Hoop/Column antenna system requires speci-

fication of the type of actuators and their locations and orientations in
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Hast assembly

Electronic feeds
and feed panels

Upper hoop support
cables

Hoop section

I.-OVST llOG" S11Ti

cables

Solar panels

Fig.' 1. THE. HOOP/COLUMN; ANTENNA SYSTEM.
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the structure. For this study point thrusters and/or torquers are assumed

to generate the required control forces and torques. The location and

orientation of these thrusters depend on the mode shapes of the structure

and which modes in particular are to be controlled. The first thirteen

modes corresponding to the data provided by NASA-Langley will be included in

the controls analysis and, hence, it is convenient here, to choose thirteen

actuators in this analysis. Each actuator is selected to have a principal

effect on a particular mode, but the same actuator may help to control a

different mode as well. Controllability considerations of the Hoop/Column

system based on the proposed location of the thirteen actuators as shown in
2

Fig. \2 have been established using graph theoretic techniques . Further,

the earlier analyses of the Hoop/Column system considered either a determini-

stic linear system with noise-free plant and sensors , or a stochastic linear

system (with plant and measurement noise) but with the restriction that only

torque actuators on the feed mast were considered in the controls analysis4,

where extensive transient performance was not simulated. The purpose of this

paper is to synthesize a control law and simulate transient performance

characteristics, based on stochastic optimal control theory, which can be

realized by combination of the Ralman filter and linear feedback techniques

and under the assumption of co-located sensors and actuators.

II. Mathematical Formulation of the Problem

The dynamic model of the Hoop/Column structural system in the absence

of damping can be represented as

MZ + KZ = F (1)c

6.5



Actuator no. (circled)

1 2 3 and 4
5
6
7 -
3

9
10
n
12
13

(8)

Mode being affected

Feed Kast Torsion (12)
First Bending (about 7 axis)
First Bending (about x axis)
Surface Torsion (10)
Yaw (rotation about z axis)
and First Torsion (7)
Translation along x y Also second (11)
Translation along 7 Mast bending (13)
Translation along z
Pitch (rotation about 7 axis)
Roll (rotation about x axis)

Fig. 2 PROPOSED ARRANGEMENT OF ACTUATORS - HOOP/COLUMN ANTENNA SYSTEM
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where

M - 672 x 672 mass/inertia matrix

K - 672 x 672 stiffness matrix

Z - 672 x 1 matrix consisting of the displacements and rotations

at the nodal points

FC - 672 x 1 control vector

F
c - Bc U (2)

where

BC - control matrix of order 672 x p

for

p - number of actuators

U - p x 1 matrix associated with the control vector

In general, Z is the state vector containing the generalized co-ordinates

of each node and will be of the order (nx6) for n number of nodes and all 6

degrees of freedom; M is the modal mass (inertia) matrix of order (6n x 6n);

K is the stiffness matrix of order (6n x bn); and B is the control influencec

matrix of order (6n x p) for p number of actuators to be arranged on the

structure. In the present model, represented by equation (1) the number of

nodes is equal to 112 (i.e.n = 112), corresponding to the number of nodal

(grid) points in the FEM output.

To decrease the dimensionality of the model a modal transformation is-

carried out defining
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where

ij» is the matrix containing the eigenvectors of equation (1) and is

of order (6n x m) , for m number of modes and q is a modal vector of order (mxl).

In this case, we are considering the first thirteen modes which include all

six rigid modes and the first seven flexible modes, so that m = 13.

After using the transformation between the modal co-ordinates given by

equation (3) in equation (1), equation (1) can then be rewritten as

<J>TM<j>q 4- <j>TK4>q = <}>TFc (4)

The left hand side of equation (4) can be rewritten, using the properties of

the eigenvalues and associated eigenvectors as

where

$Tfy. = diag [m.] = C" m^l

<j>TK<̂  = diag LK^ » C" K^J

The control influence matrix, B , in equation (2) is formed as follows:

If there is an actuator that influences the i node ( 1 <i< 112) in the

jth direction (1 < j < 6), then Bc(k,L) = 1 where k = (i-1) x frfj and L = the

designated number of the actuator. Thus, B , consists of zeros and ones, showing

the influence of force actuators on the translational degrees of freedom of the

various nodes, and the influence of tne torque actuators on the rotational

degrees of freedom.
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Equation (5) can be rewritten in the form

\

V
» V

as

0 I

-1
-C mi ][ K.. ] 0

ql

.'%.

+

0

-1 T
[ miJ-*Bc

U (6)

where the state variables, q and q are denoted,
1 2

V *1

Equation (6) is rewritten in the form:

X - AX + BU

where

X , A
-1

-C a] [ 0

(7)

'
Now considering the stochastic problem, the plant noise is included in

equation (7) to yield the stochastic linear dynamic system

•

X - AX + BU + Gw (8)

The measurement vector, Y,. can be related to the state vector and the measure-

ment noise according to,
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Y = HX + v (9)

Equations (8) and .(9) together with the following cost function,

lin 1 t. T T
J = E( (X QX + U RU) dt ) (10)

V~2tf to
5

completely define the stochastic problem. After minimizing the cost function,
5

the optimal control vector U becomes,

U - -CX (11)

where
-1 T

C. - R B K . (12)

and

K is the steadystate solution of the matrix Riccati differential equation,
T -1 T

-K - KA + A K - KBR B K + Q (13)
6

The estimate, X, is obtained from

X = A X + B U + F ( Y - H X )

with, the filter gain F, expressed as

T -1 .
F - PH V . (15)

where P is the solution of the filter matrix Riccati differential equation,

T T -1 T
P = AP -I- PA - PH V HP +.GWG (16)

where
T

V = E (w ) (17)
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Mode No.

Table 1 - Hoop?Column model .eigen values

Frequency . Generalized Generalized

Hz mass.m (Ib-sec /in) stiffness, K (Ib/in)
i i

1 0.0 16.44388 0.0

2 0.0 8.925020 0.0

3 0.0 7.349353 0.0

4 0.0 9.704152 0.0

5 0.0 2.940652 0.0

6 0.0 8.418909 0.0

7 0.1188347 153.1573 85.38542

8 0.2142455 5.232954 9.482657

9 0.2709558 3.073094 8.907021

10 0.5063228 0.3046446 3.083247

11 0.7288725 1.992988 40.88663

12 0-.8897594 723,5216 22612,90

13 0.9192313 0.6581203 21.95405

IIC. Possible Arrangement of Actuators for the Hoop/Column System

Twelve actuators consisting of combinations of point actuators and a tor-

quer are assumed to be located at positions along the mast and at selected posi-

tions in the feed -assembly. The remaining actuator is assumed to be a point actua-

.:. tor mounted on one of the rigid links of the hoop assembly and whose thrust
i

direction is tangential to the hoop circle. Fig. 2 describes the proposed actua-

- -tor assembly. Actuators numbers 5 and 6 are assumed to provide control over

translation along the X and Y directions, respectively, and, in. addition, also

6.11
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and
T

W = E (ww ) (18)

Substitution of equation (11) into equation (8) will yield

X - AX - BCX + Gw (19)

Furthermore after including equations (9) and (11) in equation (14) the

lug first order differential equation in the estimated state vector results:

•

X = (A - FH - BC) X + FHX + Fy (20)

The simulation of the stochastic optimally controlled system here will

involve the simultaneous numerical solution of the sets of differential equâ -

tions in both the state variables and the estimated state variables, represented

by equations (19) and (20). A flow diagram schematic of this configuration is

illustrated in Fig. 3, and will be taken as the basis for studying the system

behavior. This approach has been selected as being computationally simpler than

considering, alternatively, simultaneous differential equations in the state

+*
vector together with differential equations in the error vector, e = X - X.

If the latter approach were taken, then at each time step a subtraction of ap-

propriate components of X from the corresponding components of X would be

required.

IIB. Mass and Stiffness Properties of the Hoop/Column System

The model considered here consists of six rigid body modes (3 translation+

3 rotation ) and the first seven flexible modes. Table 1 indicates the general-
3

ized mass, the generalized stiffness, and the frequency at each mode.
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Fig. 3 STOCHASTIC OPTIMAL CONTROL CONFIGURATION
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to control the first bending modes (modes 8 and 9). Actuator 11 controls

translation along the Z direction, whereas actuators 8,12, and 13 control yaw,

pitch and roll motions respectively. Actuators 1,2,3, and 4 are selected so

that each actuator could provide independent control of the feed mast torsion

(mode 12). Actuators 9 and 10 are selected to control the second mast bending

(modes 11 and 13). Actuator 7 controls surface torsion (mode 10) and is the

only actuator assumed to be mounted on the hoop. Table 2 indicates the

various modes affected by each actuator.

Table 2 •" Relationship between actuators and modes directly influenced

Actuator No, (circled in Fig. 2) Mode being affected

1,2,3 and 4 Feed Mast Torsion (12)

5> ' First Bending (about Y axis) (8)

6 First Bending (about X axis) (9)

7 Surface Torsion (10)

8 (Torquer) Yaw (rotation about Z axis) and First

9 Translation along X axis and Second

Mast Bending (11)

10 Translation along Y axis and Second

Mast Bending (13)

11 Translation along Z axis

12 Pitch (rotation about Y axis )

13 Roll (rotation about X axis)

III* Numerical Simulations and Synthesis of Control Law

Numerical calculation of the control gains and filter gains and the

6.14



'̂-v-V-.jv_.̂ ^ J-

simulation of the dynamic transient responses are obtained with the

aid of ORACLS. For the proposed 13 actuator model a. parametric study

was performed showing the effect of varying Q from 1001 to 100001 and

R from I to 1001 on the least damped mode of the system (Fig. 4). It

has been concluded that Q =10001, R=I is a suitable design point from

the stand point of minimizing the least damped modal time constant and

maintaining a reasonable control effort. As mentioned earlier, con-

trollability of the proposed system of 13 actuators (Fig. 2) has been

verified. Further, it has been established that closed loop eigen-

values of the combined plant and estimator exist for all combinations

of Q,R,W and V considered here. As an example, Table 3 shows the

closed loop eigenvalues of the combined plant and estimator system

for Q=1000I, R=I and Q=10000I, R=I with W=0.00001, 7=0.0000025 assumed

in both cases. The values of the plant noise are in general of the

~5 7order of 1.0x10 (dn-cm) . The values of the sensor noise, varies

with the type of sensor, measurement device. For example, some of the

angular and linear displacement sensors have noise characteristics of the

— 7 2 - 7 2order of 1.0x10 (rad) and 1.0x10 (m) , respectively. Since in our

problem more than one type of displacement and/or rate may be required

to be sensed, some average values of these plant and measurement noises

have been assumed.

Figs (5a-5g) show the transient behavior of the modal coordinates

with random noise generated 'for an. initial displacement of 0.01
/

in all modes. (Figs (6a-6c) indicate the transient behavior of the esti-

mated modal displacement coordinates which have an initial assumed displace-

ment of 0.01. Figs (5a-5g) and Fig (6a-6c) along with Table 4 show that

for the same order of control effort,
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Table 3

Table showing the eigenvalues of the closedloop stochastic system

with observation for different state weighting matrices

13 Actuators/ 13 Modes W=0.00001, 7=0.0000025

Q=1000I, R=I- Q=10000I, R=I

(Rea l ) I /sec jwdmaginary) ( R e a l ) I / s e c j w ( I m a g i n a r y )

0.

0.

1.

1.

1.

1.
1.

0.

0.

1.

0.

0.

0.

0.

4179

4179

0058

0118

0142

0248

0260

7046

7046

0543

6137

6137

9666

9666

0

-0

0

0

0

o

0

0

-0

0

0

-0

0

-0

.4544

.4544

.0

.0

.0

.0

.0

.7785

.7785

.0

,8688

.8683

.4922

.4922

-0.

-0.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-1.

-0.

-0.

-0.

5012

5012

0006

0011

0023

0024

0082

0086

0125

0142

0544

6137

6137

9666

0.

-0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

-0.

0.

5193

5193

0

0

0

0 .

0

0

0

0

0

8688

8688

4922
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Q=1000I, R-I

(Real) I/ sec

-1.0868

-1.0902

-1.0947

-1.0987

-1. 1360

-1. 1360

-1. 2914

-1. 1849

-1. 1849

-1.5807

-1.0950

-1.0950

-2.5134

-2.5688

-2. 1916

-2. 1916

-1.0244

-1.0244

-3. 2607

-0.0575

-0.0575

-3.9913

-3.6151

-3.6151

jw( Imaginary)

0.0

0.0

0.0

0 .0

0.4403

-0.4403

0.0

0.6481

-0.6481

0.0

1.4745

-1.4745

0.0

0.0

1.6704

-1.6704

2 .7961

- 2 . 7 9 6 1

0.0

3.3319

-3.3319

0.0

1.7994

-1.7994

Q=10000I, R=I

(Real) I/ sec

-0 .9666

-1.0902

-1.0947

-1. 1976

-1. 1360

-1. 1360

-1.3041

-1.3257

-1. 1849

-1. 1849

-1.0950

-1.0950

-2.5134

-2.5688

-2.6843

-1. 1000

-1. 1000

-3. 2607

-0.0575

-0.0575

-0.5617

-0.5617

-0.9201

-0 .9201

jw( Imaginary)

-0 .4922

0.0

0.0

0.0

0.4403

-0.4403

0.0

0 .0

0.6481

-0.6481

1.4745

-1.4745

0.0

0 .0

0.0

2.6437

-2 .6437

0.0

3.3319

-3.3319

4.4959

-4.4959

5 . 4 9 1 2

-5 .4912



Q=1000I, R-I c. 0=100001, R=I

(Real) I/sec

-0.5617

-0.5617

-5 .4764

-0 .9201

- 0 . 9 2 0 1

-0.0078

-0 .0078

-0 .5935

-0.5935

-6. 2697

-9 .2251

-10.0084

-12.4055

-30.1863

jw(Imaginary)

4 . 4 9 5 9

-4.4959

0 . 0

5.4911

-5.4911

5 .5905

-5 .5905

5 .7365

-5 .7365

0 .0

0 .0

0 .0

0.0

0 .0

(Real) I/sec

-0 .0091

-0.0091

-0.5935

-0.5935

- 6 . 3 7 9 2

-8.7613

-9 .2251

-12.6541

-13. 1993

-19.0026

-27. 1591

- 3 2 . 9 8 4 7

-40.2118

-98 .5507

jw(Imaginary)

5 . 5 9 0 5

-5.5905

5 . 7 3 6 5

-5 .7365

0 .0

0 .0

0 .0

0 . 0

0.0

0.0

0 . 0

0 .0

0 . 0

0 .0
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Tab le 4

Compar i son of maximum a c t u a t o r fo rce a m p l i t u d e s

Q-1000I, R-I , q i ( 0 ) - 0 . 0 1 , i - l , 2 . . . , 1 3 . 13 A c t u a t o r s / 13 Modes

Max imum a c t u a t o r fo r ce Actual State

amp 1 i tudes ( pounds) < with Noise

( in- lb)

f 1 2

Stochas t ic

case

W - 0 . 0 0 0 0 1

V - 0 .0000025

0.

0.

0.

0.

1.

0.

1.

0.

0.

0.

0.

0.

0.

3500

0569

3030

0569

3000

2830

2700

0124

2360

1570

4060

3520

0688

0.

0 .

0 .

0.

1.

0.

1.

0.

0.

0.

0.

0.

0.

3330

0570

2681

0570

3028

2865

2310

0140

2859

1574

4086

3521

0660

6.34



the estimate of the state closely follows the actual system dynamics thus

ensuring a satisfactory estimation process. The assumed initial dis-

placements of 0.01 in the modal coordinates correspond to the expected

maximum perturbations in the linear range from the nominal operating

required RMS displacements, obtained through calculation of equation (3).

Figs. (6a-6c) and Figs. (7a-7c) together with Table 5 show that in-

creasing the elements of the state weighting matrix increases the con-

trol effort required by an order of magnitude, but does not cause a

significant improvement in the transient response. [But, it was found

in the deterministic case that increasing the elements of the state

weighting matrices causesa significant improvement in the transient

response (Ref. 3).] Other results (not shown) in which only some

of the state weighting elements are inceased, also indicate that this

technique of increasing the elements of the state weighting matrix will

not result in a marked improvement.

A separate study was conducted to determine the effect of varying

the plant and sensor noise characteristics for a fixed set of penalty

matrices. In Fig. 8 the measurement noise co-variance has been increased

to 0.00025, while the plant noise has been reduced to 0.0000001 (both

changes involve two orders of magnitude), as compared with Figs. (6a-6c).

For comparison purposes only a few of the modes are depicted in Fig. 8.

It can be seen that a great improvement in transient performance is

realized, with the same order of control effort (Table 6). Increasing
/

the elements of the control weighting matrix along with the sensor

noise for the same weighting matrix is also found to bring about a signi-

ficant improvement in the transient response as could be seen from a

comparison of Figs. (6a-6c) with Fig. 9.

6.35
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Table 5

Comparison of maximum ac'tuator force amplitudes

qi(0)-0.01, i»l,2...J13. 13 Actuators/ 13 Modes

Maximum actuator force

amplitudes(pounds)

fl

fa (in-lb)

f9

Stochastic case

W=0.00001 7=0.0000025

Q=1000I Q=10000I

R=I R= I

Fig.6 Fig.7

0.

0.

0.

0.

1.

0.

1.

0.

0.

0.

0.

0.

0.

3330

0570

2681

0570

3028 .

2865

2310

0140

2859

1574

4086

3521

0660

1.

0.

1.

0.

3.

0.

3.

0.

0.

0.

1.

0.

0.

5759

1915

4151

1915

6 0 2 2

8400

0046

1184

8483

6483

3481

9442

2342
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ĉo
s
at

H

00

*00
E£!

U-l

O
OJ
U
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Table 6

Comparison of maximum actuator force amplitudes

Q=1000I, R=I , qi(0)-0.01, i-l,2...,13. 13 Actuators/ 13 Modes

Maximum actuator force

amplitudes (pounds)

(in-lb)

Stochastic case

W-0.00001 W=0.0000001

V = 0 . 0 0 0 2 57=0 .0000025

F ig .6

0.3330

0 .0570

0. 2681

0.0570

1.3028

0. 2865

1.2310

0.0140

0.2859

0. 1574

0.4086

0.3521

0.0660

Fig.8

0.3490

0 .0570

0.3010

0.0569

1.3028

0. 2865

1. 2310

0.0127

0. 2606

0. 1574

0.4086

0 .3521

0.0870
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IV. Concluding Comments

For all cases considered here the estimate of the state closely

correlates with the actual (RMS) system dynamics. Some improvement

in the transient performance may be achieve by increasing the sensor

noise because the filter gain depends upon the inverse of the sensor

noise covariance. As the sensor noise covariance is increased, the

filter gain decreases and the matrix (A - FH - BC) increases causing

a faster decay of the transients. However, one cannot increase the

sensor noise covariance indefinitely since large values of sensor

noise may affect the performance of the sensor itself, and thus, the

estimation process. Plant noise can be reduced by incorporating appro-

priate filtering devices and .this may also result in improved transient

performance; here a definite trade-off exists between the increased

complexity, cost, weight and reliability of the filter, and the possi-

ble gain in system performance. Further studies in this area are

recommended.

When there is no or only limited flexiblity in altering the stoc-

hastic properties of the plant and the sensors, then one should consider

the possible relocation of the actuators and /or sensors. It is suggested

that this could form the basis for further research on this problem.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The two dimensional model of the SCOLE configuration developed

here will be extended to the three dimensional situation and control

synthesis initiated for both linear systems analysis as well as for

slewing maneuvers outside of the linear range. The ultimate goal

of such an analysis will be to support the actual design of a scale

model laboratory experiment to be prepared by the Flight Dynamics

and Control Division at NASA Langley.

At this stage of our preliminary review of the stability of

large ordered space structure systems with input delays, it is not

completely conclusive that such large ordered systems under general

oscillatory motions could be stabilized by a time delayed feedback.

Further work in this area is anticipated together with a sample

numerical example computation and is proposed for the next grant year.

It is found that for extremely flexible large orbiting platforms,

especially those nominally oriented in the local horizontal plane,

that appreciable amplitudes in the rigid modes may be induced by solar

radiation pressure even in the presence of (active and/or passive)

control. When this situation is suspected, linear quadratic regulator

techniques offer a versatile means of redesigning control laws pre-

vously synthesized without compensating for environmental disturbances.

In general, thermal deformations of simple beam and platform type

structures in orbit may be of greater concern than the deformations

due to structural vibrations when modelling the disturbances arising

from solar radiation pressure.
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Within cost and weight constraints materials should be selected and

designed so as to minimize the expected thermal deformations.

Oar analysis of the stochastic optimal control of the proposed

Hoop/Column antenna system indicates that increasing the appropriate

elements in the state weighting matrix may not bring as noticeable

improvement in the transient performance as it did for the deter-

ministic case. A definitive improvement in both transient and steady

state (RMS) performance can be realized by decreasing the plant noise

and (1) suitably increasing the measurement noise or by (2) selectively

increasing the measurement noise and also selected elements in the

control weighting matrix.




