HOWARD UNIVERSITY
SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING WASHINGTON, DEC. 20059

FINAL REPORT

NASA GRANT: NSG-1414, Suppl. 6
by

Peter M. Bainum
Professor of Aerospace Engineering Principal Investigator
and

A.S.S.R. Ready
Assistant Professor Co-Investigator
and

R. Krishna, Cheick M. Diarra, and S. Ananthakrishnan

Graduate Research Assistants

ABSTRACT	
LIST OF FIGURES	
CHAPTER I	INTRODUCTION
CHAPTER II	MODELLING TECHNIQUES AND CONTROL SYNTHESIS FOR THE SPACECRAFT CONTROL LABORATORY EXPERIMENT-PRELIMINARY RESULTS
CHAPTER III	STABILITY OF LARGE SPACE STRUCTURES WITH INPUT DELAYS
CHAPTER IV	CONTROL OF AN ORBITING FLEXIBLE SQUARE PLATFORM IN THE PRESENCE OF SOLAR RADIATION
CHAPTER V	DYNAMICS AND CONTROL OF ORBITING FLEXIBLE BEAMS AND PLATFORMS UNDER THE INFLUENCE OF SOLAR RADIATION THERMAL EFFECTS
CHAPTER VI	ANALYSIS OF A CONTROL SYSTEM FOR A LARGE SPACE ANTENNA SYSTEM IN the presence of plant and measureMENT NOISE
CHAPTER VII	CONCLUSIONS AND RECOMMENDATIONS

A preliminary Eulerian formulation of the in-plane dynamics of the proposed SCOLE configuration is undertaken when the mast is treated as a cantilever - type beam and the reflector as a lumped mass at the end of the beam. Frequencies and mode shapes are obtained for the open loop model of the beam system. The inherent time delay due to actuators is taken into consideration to analyze the stability of closed-loop control systems by both frequency and time domain techniques. Environmentaldisturbances due to solar radiation pressure are incorporated into the previously developed models of controlled large flexible orbiting platforms nominally oriented along the local vertical (with the major surface normal to the orbital plane) or oriented with the major surface lying in the local horizontal plane. For extremely flexible platforms the need to redesign previously synthesized control laws is indicated. Thermally induced deformations of simple beam and platform type structures are modelled and expressions developed for the disturbance torques resulting from the interaction of solar radiation pressure. Such thermal deformations may give rise to larger disturbance torques than the interaction of solar pressure with the vibrating structure (ignoring the thermal distortions). Noise effects in the previously designed deterministic model of the Hoop/Column antenna system are found to cause a degradation in system performance. Improved transient and steady state performance can be obtained by appropriate cnanges in the ratio of plant noise to the measurement noise and/or changes in the control weighting matrix elements.

Figure No.	Caption	Page No.
	Chapter II	.
2.1	SCOLE System Geometry in the Deformed State (Two-Dimensional)	2.14
2.2	SCOLE Configuration - Modal Shape, Pitch First Bending Mode	2.17
2.3	SCOLE Configuration - Modal Shape, Pitch Second Bending Mode	2.17
2.4	SCOLE Configuration - Modal Shape, Pitch Third Bending Mode	2.18
2.5	SCOLE Configuration - Modal Shape, Pitch Fourth Bending Mode	2.18
2.6	SCOLE Configuration - Modal Shape, Pitch Fifth Bending Mode	2.19
	- Chapter IV	
1.	A Thin Plate Exposed to Solar Radiation Pressure	4.8
2.	The First Five Mode Shapes of a Square Plate	4.8
3.	Moment Due to Solar Radiation Pressure on a Plate ($\psi_{i}=0.0$)	4.9
4.	A Square Plate in Orbit Nominally Along the Local Vertical	4.9
5.	Time Response of the Plate Nominally Oriented Along the Local Vertical Under the Influence of Solar Radiation Pressure	4.10
6.	Controlled Response of the Plate Nominally Orieted Along the Local Vertical ($\omega_{1}=10.0$)	4.10
7.	Dumbbell Stabilized Plate	4.11
8.	Time Response of Dumbbell Stabilized Plate (Control Based on LQG)	4.11

Chapter V

1 (a).	Dumbbell Stabilized Flexible Beam Nominally Oriented Along the Local Horizontal	5.5
1 (b).	Uniform Flexible Beam Nominally Oriented Along the Local Vertical	5.5
2(a).	Dumbbell Stabilized Plate in Orbit	5.5
2 (b).	Plate in Orbit Nominally Oriented Along the Local Vertical	5.6
3.	Thermal Gradient in a Beam Due to Solar Heating	5.6
4.	Thermal Gradient in a Beam as a Function of Solar Incidence Angle and Thermal Conductivity	5.6
5.	Beam Bending Due to Solar Radiation Heating	5.6
6.	Response of the Beam Nominally Oriented Along the Local Vertical Under the Influence of Solar Radition Disturbance Caused by Thermal Deformation of the Beam ($\delta_{t h}=0.001 \ell$)	5.7
7.	Response of the Dumbbell Stabilized Beam Under the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Beam $\left(\delta_{\mathrm{th}}=0.001 \ell \quad \ell=100 \mathrm{~m}\right)$:	5.7
8.	Response of the Plate Nominally Oriented Along the Local Vertical Under the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Plate ($\delta_{\text {th }}=$ $0.001 \ell) ~ \ell=100$ m. Control Law Based on LQG $Q=100 I \quad R=I$.	5.8

	Chapter V	
9.	Response of the Plate Nominally Oriented Along the Local Vertical Under the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Plate ($\delta_{t h}=0.001 \ell$) $\ell=100 \mathrm{~m}, \omega_{1}=10$ (Control Based on Split Weighting of State)	5.8
10.	Response of the Dumbbell Stabilized Plate under the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Plate $\left(\delta_{\mathrm{th}}=0.01 \ell\right) \ell=100 \mathrm{~m}, \omega_{1}=10$. Control Based on LQR $-Q^{1}=100 I$, $R=I$	5.9
11.	Response of the Dumbbell Stabilized Plate Under the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Plate $\left(\delta_{t h}=0.001 \ell\right) \ell=100 \mathrm{~m}, \omega_{1}=10$. Control Based LQR $Q=10,000 I$, $R=100 I$	5.9
	Chapter VI	
1.	The Hoop/Column Antenna System	6.4
2.	Proposed Arrangement of Actuators Hoop/Column Antenna System	6.6
3.	Stochastic Optimal Control Configuration	6.13
4.	Variation of the Time Constant of the Least Damped Mode with Q and R Penalty Matrices	6.16
5.	Transient Response for 100 secs.Hoop/Column Antenna System - 13 Actuators/13 Sensors/ 13 Modes Actual State with Noise	6.20

Figure No.	Caption	Page No.
	Chapter VI	
6.	Transient Response for 100 secs. Hoop/Column Antenna System - 13 Actuators/13 Sensors/ 13 Modes State Estimate with Nominal Weights on State and Control	6.27
7.	Transient Response for 100 secs. Hoop/Column Antenna System - 13 Actuators/13 Sensors/13 Modes-State Estimate with Increased Penalty on the State	6.36
8.	```Transient Response for 100 secs. -Hoop/ Column Antenna System - 13 Actua- tors/13 Sensors/13 Modes-State Estimate, Effect of Changing Noise Parameters```	6.44
9.	```Transient Response for 100 secs. - Hoop/ Column - 13 Actuators - 13 Modes - Stochastic Case Q = 1000I, R = 100I W = 0.0000001 V = 0.00025```	6.52

I. INTRODUCTION

The present grant extends the research effort initiated in previous grant years (May 1977 - May 1983) and reported in Refs. 1-9*. Techniques for controlling both the shape and orientation of very large inherently flexible proposed future spacecraft systems are being studied. Possible applications of such large structures in orbit include: large scale multi-beam communication systems; earth observation and resource sensing systems; orbitally based electronic mail transmission; and as orbital platforms for the collection of solar energy and transmission (via microwave) to earth based receivers.

This report is subdivided into seven chapters. Chapter II presents a preliminary development of a two dimensional model of the rotational equations of motion for the proposed Spacecraft Control Laboratory Experiment - (SCOLE) ${ }^{10}$. This development is based on the expansion of the Eulerian moment equations assuming the Shuttle and the reflector are rigid bodies and modelling the mast as a flexible cantilever type beam. A preliminary calculation is performed to obtain the frequencies of the fundamental and first few in-plane bending modes as well as the corresponding modal shape functions.

In the following chapter a preliminary review is given of stability techniques that can be applied when time delays are present in the implementation of the control inputs.
*References cited in this report are listed separately at the end of each chapter.

Both time domain and frequency domain techniques are described with emphasis placed on applications to large order systems typical of large space structures. The major question to be answered is whether marginally stable or oscillatory systems could be stabilized by using delayed feedback techniques.

Chapter IV is based on a paper to be presented at the Fourteenth International Symposium on Space Technology and Science and examines the control of a thin orbiting flexible square platform in the presence of solar radiation. The disturbance torques resulting from the interaction of solar pressure with the vibrating plate analog of the platform are modelled and incorporated in the dynamic model of a square plate nominally oriented along the local vertical with the major surface normal to the orbital plane and also nominally oriented with the major surface lying in the local horizontal plane. Transient responses and control requirements are examined for both nominal orientations.

The effect of environmental disturbances on the dynamics of large orbiting systems is extended in Chapter V to also include solar heating effects. A paper to be presented at the 1984 AIAA/AAS Astrodynamics Conference forms the basis of this chapter. The evaluation of the effect of solar radiation pressure on flexible beams and plates which are subject to thermal deflections (in addition to vibrations) is the objective of this paper. For very flexible system where the previously developed control laws may not be adequate to account for environmental disturbances, the versatility of the linear quadratic regulator techniques provided by the ORACLS software package ${ }^{11}$ can be utilized to
redesign the control strategies in order to reach a compromise between reducing the excess vibrational and rotational energy while at the same time maintaining the control effect at an acceptable level.

Partial support from this grant was provided for one of the graduate research assistants during the Summer of 1983 only. This research was continued during the 1983-84 academic year sponsored by the University, and the results are presented in Chapter VI in the format of a paper presented at the recent 1984 AIAA Mid-Atlantic Regional Student Conference. In this paper, the work previously initiated during the last grant year ${ }^{9}$ analyzing the dynamics and control of the proposed hoop/ Column orbiting antenna system is extended to incorporate the effects of both plant and measurement noise in the system. The results described here are based on co-located actuators and sensors assumed to be located on the column, electronic feed, and also on the hoop. The general degradation of the previously designed deterministic system is attributed to the incorporation of the uncorrelated zero-mean white noises assumed to be present in the plant and measurement sensors. The Kalman filter algorithm of the ORACLS package is used to develop control laws and simulate the estimate of the state in an optimal LQG manner. Studies are included showing the effect of increasing the elements in the state weighting matrix as well as varying the noise characteristics.

Chapter VII describes the main general conclusions together with future recommendations. The effort described in Chapters II and III is being continued during the $1984-85$ grant period in accordance with our proposal ${ }^{12}$ and subsequent discussions.

References

1. Bainum, P.M. and Sellappan, R., "The Dynamics and Control of Large Flexible Space Structures," Final Report NASA Grant: NSG-1414, Part A: Discrete Model and Modal Control, Howard University, May 1978.
2. Bainum, Peter M., Kumar, V.K., and James, Paul K., "The Dynamics and Control of Large Flexible Space Structures," Final Report, NASA Grant: NSG-1414, Part B: Development. of Continuum Model and Computer Simulation, Howard University, May 1978.
3. Bainum, P.M. and Reddy, A.S.S.R., "The Dynamics and Control of Large Flexible Space Structures II," Final Report, NASA Grant NSG-1414, Suppl. I, Part A: Shape and Orientation Control Using Point Actuators, Howard University, June 1979.
4. Bainum, P.M., James, P.K., Krishna, R., and Kumar, V.K., "The Dynamics and Control of Large Flexible Space Structures II," Final Keport, NASA Grant NSG-1414, Supp1. 1, Part B: Model Development and Computer Simulation, Howard University, June 1979.
5. Bainum, P.M., Krishna, R., and James, P.K., "The Dynamics and Control of Large Flexible Space Structures III," Final Report, NASA Grant NSG-1414, Suppl. 2, Part A: Shape and Orientation Control of a Platform in Orbit Using Point Actuators, Howard University, June 1980.
6. Bainum, P.M. and Kumar, V.K., "The Dynamics and Control of Large Flexible Space Structures III," Final Report, NASA Grant NSG-1414, Suppl. 2, Part B: The Modelling, Dynamics and Stability of Large Earth Pointing Orbiting Structures, Howard University, September 1980.
7. Bainum, P.M., Kumar, V.K., Krishna, R. and Reddy, A.S.S.R., 'The Dynamics and Control of Large Flexible Space Structures IV," Final Report, NASA Grant NSG-1414, Supp1. 3, NASA CR-165815, Howard University, August 1981.
8. Bainum, P.M., Reddy, A.S.S.R., Krishna, R., Diarra, C.M., and Kumar, V.K., "The Dynamics and Control of Large Flexible Space Structures $V^{\prime \prime}$, Final Report, NASA Grant NSG-1414, Suppl. 4, NASA CR-169360, Howard University, August 1982.
9. Bainum, P.M., Reddy, A.S.S.R., Krishna, R., and Diarra, C.M., "The Dynamics and Control of Large Flexible Space Sturctures VI," Final Report NASA Grant NSG-1414, Suppl. 5, Howard University, Sept. 1983.
10. Taylor, L.W. and Balskrishnan, A.V., "A Mathematical Problem and a Spacecraft Control Laboratory Experiment (SCOLE) Used to Evaluate Control Laws for Flexible Spacecraft ... NASA/ IEEE Design Challenge," (Rev.), January 1984. (originally presented at AIAA/VPI\&SU Symposium on Dynamics and Control of Large Structures," June 6-8, 1983).
11. Armstrong, E.S., "ORACLS - A System for Linear Quadratic-Gaussian Control Law Design," NASA Technical Paper 1106, April 1978.
12. Bainum, P.M. and Reddy, A.S.S.R., 'Proposal for Research Grant on: "The Dynamics and Control of Large Flexible Space Structures VII," Howard University (submitted to NASA), Nov. 10, 1983.
II. MODELLING TECHNIQUES AND CONTROL SYNTHESIS FOR THE SPACECRAFT CONTROL LABORATORY EXPERIENT - PRELIMINARY RESULTS

The transfer of large, massive payloads into Earth orbit is currently accomplished with considerable propulsive and control effort. As a result, spacecraft designers must strive to minimize a large structure's mass. Consequently, many of the future spacecraft will be very flexible and will require that their shape and orientation be controlled. ${ }^{1}$ The problem of controlling large, flexible space systems has been the subject of considerable research. Many approaches to control system synthesis have been evaluated using computer simulations including a preliminary synthesis of control laws for the proposed Hoop/Column System. ${ }^{2,3}$ Ground experiments have also been used to validate system performance under more realistic conditions but based on simple structures such as beams and plates. ${ }^{4}$ In a recent paper, SCOLE (Spacecraft Control Laboratory Experiment), Lawrence W. Taylor Jr. and A.V. Balakrishnan described a proposed laboratory experiment based on a model of the Shuttle connected to a flexible beam with a reflecting grillage mounted at the end of the beam ${ }^{5}$ (Fig. 2.1). The authors stressed the need to directly compare competing control design techniques, and discussed the feasibility of such direct comparison. Concern would be given to modelling order reduction, fault management, stability, and dynamic system performance. With this paper ${ }^{5}$ as a background, the purpose of the study proposed here is to model the system in different phases where each successive phase would represent a mathematical model successively closer to that of the actual laboratory system.

It is anticipated that this (multi-year) study would consist of five parts, the first of which would consist of a literature survey during which the investigators would familiarize themselves with different mathematical modelling techniques.

During the second part, the system would be successively modelled as follows:
a) The Space Shuttle as a rigid body; the reflector mast as a flexible beam type appendage; and the reflector as a rigid plate. The mast shape functions are actually solved from the fourth order non-linear flexural beam equation with different boundary conditions imposed on both the Shuttle and grillage ends. b) Here the Space Shuttle would be treated as a rigid body body; the composite appendage consisting of the flexible reflector mast and also the continuous rigid reflector (grillage) could be modelled using finite element techniques. Then the composite system dynamics can be modelled using the hybrid coordinate technique ${ }^{6}$ which involves sets of matrix equations describing the motion of the main vehicle as well as that of any attached appendages. It is anticipated that within the second part of this study these different mathematical models would be developed in a form suitable for numerical simulation.

During the third part, each of these models could be directly compared with the model proposed in the SCOLE paper ${ }^{5}$, beginning with the simulation of the open-loop system dynamics. The fourth part of the effort would consist of the control law synthesis when the model can be described by linear system dynamics - i.e., in response to small perturbations induced on the system about the nominal laboratory configuration and orientation, or after a major slewing maneuver, to remove the
remaining transients which exist in a neighborhood of the new equilibrium orientation. Such a construction of control laws will probably be based on the ORACLS software package. ${ }^{7}$ Strategies would be developed to control the shape and orientation of the beam/grillage.

First the controllability of the system could be examined based on the graph theoretic techniques already employed for a similar analysis of the Hoop/Column system ${ }^{3}$, for different combinations of numbers and locations of the actuators. Next, control laws can be constructed based on the techniques of optimal control theory, and studies can be performed comparing transient and control effort characteristics for a variety of system parameters and weighting matrix elements.

Finally, the fifth part would focus on the slewing maneuvers to accurately point the reflector at a specific target in a minimum lapse of time. For simple maneuvers (single axis) attempts would be made to analytically determine the slewing control law; for more general maneuvers, numerical techniques would be implemented.
II. A Development of the Two Dimensional Model - (Eulerian Moment Equations)

The SCOLE system is assumed to be comprised of three main parts (Fig. 2.1):
i) the Space Shuttle Orbiter with its center of mass located at point O_{1};
ii) the mast, treated as a 130 ft long beam, connected to the Shuttle at O_{2} and to the reflector at O_{3};
iii) the reflector, considered to be a flat plate with its center of mass at O_{4}.

The preliminary analysis presented here started before it was specified ${ }^{8}$ that the interface point between the mast and the Shuttle is at $0_{1} .8$ Therefore, in what follows, a position vector \vec{R}_{1} appears which defines $\overrightarrow{\mathrm{O}}_{1} \overrightarrow{\mathrm{O}}_{2}$, where O_{2} is the assumed interface point.

In the following analysis, the angular momentum of the entire system is evaluated at point O_{1} and the dynamics include the lateral displacements of the beam.
II. A. 1 Angular Momentum of the Shuttle with Respect to Point O_{1}

2.4

Consider a point, P, of mass, dm, at an arbitrary position in the Shuttle such that $\overrightarrow{O_{1}} P=\vec{r}$. The elemental angular momentum of the mass, dm , is given by:

$$
\begin{aligned}
& d \vec{H}_{0_{1}}=\vec{r} \times\left.\frac{d}{d t} \overrightarrow{O P}\right|_{R_{0}} d m=\vec{r} \times\left.\frac{d}{d r}(\vec{R}+\vec{r})\right|_{R_{0}} d m \\
& =\vec{r} \times\left\{\dot{R} \hat{k}+R \frac{d t}{\omega_{c}} \hat{\nu}+\left(\omega_{c}-\dot{\theta}\right) \hat{\jmath} \times \vec{r}\right\} d{ }_{m}^{d r} \quad \text { (2.1) }
\end{aligned}
$$

The total angular momentum for the Shuttle is obtained by integrating
Eq. (2.1) over the entire mass of Shuttle as:

$$
\vec{H}_{s} o_{1}=-\dot{R} \hat{k} \times \int_{M_{s}} \vec{r} d m-R \omega_{c} \hat{\imath} \times \int_{M_{s}} \vec{r} d m+\int_{M_{s}} \vec{r} \times\left\{\left(\omega_{c}-\dot{\theta}\right) \hat{\jmath} \times \vec{r}\right\} d m(2-2)
$$

The first and second integrals appearing in the right side of Eq. (2.2)
vanish because the center of mass of the Shuttle is at point O_{1}.
Since $\vec{r} \cdot \vec{j}=0$, Eq. (2.2) takes the form:

$$
\vec{H}_{s / 0_{1}}=\left(\omega_{c}-\dot{\theta}\right) \hat{\jmath} \int_{M_{s}} r^{2} d m=\mathbb{I}_{s} \vec{\omega}_{R_{1 / 2}}
$$

where $I I_{s}$ is the Inertia tensor of the Shuttle at point O_{1} and $\vec{\omega}_{R_{1}} / R_{0}=$ $\left(\omega_{c}-\dot{\theta}\right) \hat{j}$.
II. A. 2 Angular Momentum of the Mast with Respect to Point O_{1}
deformed

$\int_{0}^{\hat{k} t_{0}}$

Consider here an element of the mast located at point, P_{1}, with mass, dm. The elemental angular momentum of such an element is given by: $d \vec{H}_{M / O_{1}}=\overrightarrow{O_{1} P_{1}} \times\left.\frac{d}{d t} \overrightarrow{O P_{1}}\right|_{R_{0}} d m \quad$ (2.4) if one notes that $\quad \begin{aligned} & \overrightarrow{O_{1} P_{1}} \\ & \overrightarrow{O P_{1}}\end{aligned}=\overrightarrow{R_{1}}+\overrightarrow{r_{0}}+\vec{q}+\overrightarrow{O_{1}} \overrightarrow{P_{1}} \quad$ and \quad (2.5)
then, Eq. (2-4) may be expanded according to:

$$
d \vec{H}_{M / 0_{1}}=\left(\vec{R}_{1}+\vec{r}_{0}+\vec{q}\right) \times\left.\frac{d}{d t}\left(\vec{R}+\vec{R}_{1}+\vec{r}_{0}+\vec{q}\right)\right|_{R_{0}} d_{m}(2.6)
$$

$\left.\frac{d}{d t}\left(\vec{R}+\vec{R}_{1}+\vec{r}_{0}+\vec{q}\right) \right\rvert\, R_{0} \quad$ is $\underset{\rightarrow}{\text { expressed }}$ using the relationship between the rate of change of a vector, \vec{w}, in an inertial (R_{o}) and rotating $\left(R_{i}\right)$ frames, ie.

$$
\left.\frac{d}{d t} \vec{W}\right|_{R_{0}}=\left.\frac{d}{d t} \vec{W}\right|_{R_{i}}+\overrightarrow{\Omega_{R_{i} / R_{0}}} \times \vec{W}
$$

After substituion of Eq. (2.7) into Eq. (2.6) and integration term by term, one can develop:

$$
\begin{aligned}
& \vec{H}_{m / 0_{1}}=\left[\overrightarrow{R_{1}} \times \frac{d}{d t}\left(\vec{R}_{1}+\vec{R}\right)_{R_{0}}\right] M_{m}+\vec{R}_{1} \times \int_{M_{m}}\left(\dot{r_{0}} \hat{R}_{2}+\dot{q} \hat{i}_{2}\right) d m \\
& +\left(\omega_{c}-\dot{\theta}-\dot{\alpha}\right) \hat{j}\left\{\vec{R}_{1} \cdot \int_{M_{m}}\left(\vec{r}_{0}+\vec{q}\right) d m\right\}-\left.\frac{d}{d r}\left(\vec{R}+\vec{R}_{1}\right)\right|_{R_{0}} \times \int_{M_{m}}\left(\vec{r}_{0}+\vec{q}\right) d m \\
& +\int_{M_{m}}\left(\vec{r}_{0}+\vec{q}\right) \times\left(\dot{r}_{0} \hat{k}_{2}+\dot{q} \vec{h}_{s}\right) d m+\left(\omega_{c}-\dot{\theta}-\dot{\alpha}\right) \hat{d} \int_{M_{m}}\left|\vec{r}_{0}+\vec{q}\right|^{2} d m \quad(2.8)
\end{aligned}
$$

Let O_{4} be the center of mass of the reflector, and O_{3} the interface point between the reflector and the mast. The distance, X, between O_{3} and O_{4} is constant since the reflector is assumed to be rigid, at least for this analysis.

Let us now consider an element of mass, $d m$, of the reflector locate at an arbitrary point, P_{2}. The elemental angular momentum of that element of mass can be expressed as:

$$
\begin{equation*}
d \vec{H}_{r / O_{1}}=\overrightarrow{O_{1} \vec{P}_{2}} \times\left.\frac{d}{d t}\left(\overrightarrow{O P_{2}}\right)\right|_{\Omega_{0}} d m \tag{2,9}
\end{equation*}
$$

$\overrightarrow{\mathrm{O}_{1} P_{2}}$ and $\overrightarrow{\mathrm{O}_{2} \mathrm{P}_{2}}$ can be expressed as:

$$
\left.\begin{array}{l}
\overrightarrow{O P}_{2}=\vec{R}_{1}+\vec{R}_{2}+x \hat{\lambda}_{3}+x \hat{i}_{3} \\
\overrightarrow{O P_{2}}=\vec{R}+\overrightarrow{0}_{1} P_{2}
\end{array}\right\}(2.10)
$$

Eq. (2.9) may be expanded according to

$$
\begin{aligned}
& \frac{d}{\vec{H}_{r / O_{1}}}=\left(\overrightarrow{R_{1}}+\overrightarrow{R_{2}}+(X+x) \hat{\imath}_{3}\right) \times\left.\frac{d}{d t}\left(\vec{R}_{1}+\vec{R}_{2}+\vec{R}_{2}+(X+x) \hat{\imath}_{3}\right)\right|_{R_{0}} \quad \text { (2.11) } \\
& \text { Once more, }\left.\frac{d}{d t}\left(\vec{R}+\vec{R}_{1}+\vec{R}_{2}+(x+X) \hat{i}_{3}\right)\right|_{R_{0}} \quad \text { is } \\
& \text { expressed using Eq. (2.7): }\left.\frac{d}{d t} \vec{W}\right|_{R_{0}}=\frac{d}{d t} \vec{W}_{R_{i}}+\vec{\Omega} \vec{R}_{i} / R_{0} \times \vec{W}
\end{aligned}
$$

After substitution of Eq. (2.7) into Eq. (2.11) and integration term by
term over the entire mass of the reflector, one arrives at

$$
\begin{align*}
& \vec{H}_{r / O_{1}}=M_{r}\left\{\vec{R}_{1}+\vec{R}_{2}\right\} \times\left.\frac{d}{d r}\left\{\vec{R}^{+}+\vec{R}_{1}+\vec{R}_{2}\right\}\right|_{R_{0}}+ \\
& \left(\omega_{c}-\dot{\theta}-\dot{\alpha}+\dot{\beta}\right)\left\{I_{2 r}+X^{2} M_{r}\right\} \hat{\jmath}+ \\
& \left(\omega_{c}-\dot{\theta}-\dot{\alpha}+\dot{\beta}\right) M_{r}\left\{\left(\vec{R}_{1}+\vec{R}_{2}\right) \times X \hat{k}_{2}\right\}+ \\
& M_{r} X \hat{\lambda}_{3} \times \frac{d}{d t}\left\{\vec{R}+\vec{R}_{1}+\vec{R}_{2}\right\}_{R_{R}} \tag{2.12}
\end{align*}
$$

where $I_{2 r}$ is the moment of inertia of the reflector about the \hat{j} axis taken at point O_{4}.
II. B. 1 Moment Equation

The angular momentum of the entire system about O_{1} is obtained by summing the angular momentum of each part about O_{1}, ie.

$$
\begin{equation*}
\vec{H}_{T / 0}=\sum_{i=1}^{3} \vec{H}_{i / l_{1}} \tag{2.13}
\end{equation*}
$$

The moment equation

$$
\begin{equation*}
\left.\frac{d}{d t} \vec{H}_{T_{0}, 1}\right|_{x_{0}}=\vec{N} \tag{2.14}
\end{equation*}
$$

where \vec{N} is the sum of all the enternal torques, acting on the entire system, about an axis through point O_{1}.

At this stage of the analysis, it is assumed that the center of mass of the Shuttle moves in a circular orbit, ie.

$$
\begin{equation*}
\left.\frac{d}{d t} \vec{R}\right|_{2}=\left.\dot{\vec{R}}\right|_{\Omega}=\overrightarrow{0} \tag{2,15}
\end{equation*}
$$

Taking into consideration the coincidence between points O_{1} and O_{2}, Eq. (2.14) is expanded using once more Eq. (2.7) and the following result is obtained:
$\left.\frac{d}{d t} \vec{H}_{y_{1}}\right|_{\gamma_{0}} \cdot \hat{\jmath}=\vec{N} \cdot \hat{\jmath}=N_{y}=$

$$
-\mathbb{I}_{s} \ddot{\theta}+M_{r}\left[R \omega_{c} \dot{R}_{2}(\cos \theta \cos \alpha-\sin \alpha \sin \theta)+\right.
$$

$\omega_{2} \omega_{t} R R_{2}(\cos \alpha \sin \theta+\sin \alpha \cos \theta)-\omega_{3} x\{\sin \theta(\sin \beta \cos \alpha$
$-\cos \beta \sin \alpha)+\cos \theta(\sin \beta \sin \alpha+\cos \beta \cos \alpha)\}+R_{2}^{2} \dot{\omega}_{2}+$

$$
\begin{gather*}
2 R_{2} \dot{R}_{2} \omega_{2}-R \cos _{c}^{2} R_{2}(\sin \alpha \cos \theta+\cos \alpha \sin \theta)- \\
R \omega_{c}^{2} X\{\sin \theta(\cos \beta \sin \alpha-\sin \beta \cos \alpha)-\cos \theta(\cos \beta \cos \alpha+\sin \beta \sin \alpha)\} \\
\left.+2 \dot{R}_{2} \omega_{3} X \sin \beta-\omega_{2} \omega_{3} X \cos \beta+X^{2} \dot{\omega}_{3}\right] \\
+\dot{\omega}_{3} I_{2 r}-X\left\{\cos \beta\left(\ddot{R}_{2}-\omega_{2}^{2} R_{2}\right)+\right. \\
\left.\sin \beta\left(\dot{\omega}_{2} R_{2}+2 \omega_{2} \dot{R}_{2}\right)\right\}+\left\{R \omega_{c} \omega_{2}-R \omega_{c}^{2}\right\} x \\
(\cos \alpha \sin \theta+\sin \alpha \cos \theta) \int_{M_{m}} r_{0} d m+ \\
\left\{R \omega_{c} \omega_{2}-R \omega_{c}^{2}\right\}(\sin \alpha \sin \theta-\cos \alpha \cos \theta) \int_{M_{m}} q d m \\
+R \omega_{c}(\cos \alpha \sin \theta+\sin \alpha \cos \theta) \int_{M_{m}} \dot{q} d m+\dot{\omega}_{2} \int_{M_{m}} r^{2} d m \\
+\omega_{2} \int_{M_{m}} \frac{d}{d t}\left(r^{2}\right\}_{R_{2}} d m+\int_{M_{m}}\left(r_{0} \ddot{q}+q \dot{q} \omega_{2}\right) d m=N_{y} \tag{2.16}
\end{gather*}
$$

II. B. 2 Expression for \vec{q}

In the moment equation, Eq. (2.16), one notices integrals involving \vec{q}, the transverse displacement vector, and its first and and second derivatives with respect to time. It is, therefore, necessary to develop an expression for \vec{q}.
II.B.2.i Relation between $q(x, t)$ and $y(x, t)$

Consider the beam in its deflected configuration. $y(\ell, t)$ is the deflection of the reflector-end of the mast at an arbitrary time, t; $y(x, t)$, the deflection of an arbitrary point on the mast at the same time.

$$
\begin{equation*}
\text { From Fig. (2.1), } \hat{k}_{1} \cdot \hat{k}_{2}=\cos \alpha \tag{2.17}
\end{equation*}
$$

Assuming α small, $\tan \alpha$ can be expressed as

$$
\begin{equation*}
\tan \alpha=\frac{y(l, t)}{l} \approx \alpha=\frac{y(x, t)+q(x, t)}{x} \tag{2.18}
\end{equation*}
$$

From Eq. (2.18) one derives

$$
\begin{equation*}
q(x, t)=\frac{x y(l, t)}{l}-y(x, t) \tag{2.19}
\end{equation*}
$$

or

$$
\begin{equation*}
q(x, t)=\alpha x-y(x, t) \tag{2.20}
\end{equation*}
$$

II.B.2.ii Evaluation of $y(x, t)$

Assuming separability of the variables, the beam equation,

$$
\begin{equation*}
+\frac{E I}{S A} \frac{\partial^{4} y(x, t)}{\partial x^{4}}+\frac{\partial^{2} y(x, t)}{\partial t^{2}}=0 \tag{2.21}
\end{equation*}
$$

is solved to yield solutions of the form:

$$
\begin{equation*}
y(x, t)=f(t) \phi(x) \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
f(t)=E \sin \omega t+F \cos \omega t \text { with } \omega=\text { frequency of the vibration } \tag{2.23}
\end{equation*}
$$

and $\quad \phi(x)=A \cos \beta x+B \sin \beta x+C \cosh \beta x+D \sinh \beta x$
When the following boundary conditions are assumed:

$$
\begin{equation*}
\text { a) } y(0, t)=0 \text {; } \tag{2.24}
\end{equation*}
$$

b) $y^{\prime}(0, t)=0$
c) EI $y^{\prime \prime \prime}(\ell, t)=-M r \ddot{y}(\ell, t)$; d) EI $y^{\prime \prime}(\ell, t)=0$
where $y^{\prime}=\frac{\partial y}{\partial x} \quad$ and $\quad \dot{y}=\frac{\partial y}{\partial t}$
these can be expressed in the form:

$$
\left.\begin{array}{l}
\alpha A+\delta B=0 \tag{2.26}\\
\gamma A+\sigma B=0
\end{array}\right\} \Leftrightarrow \underbrace{\left[\begin{array}{ll}
\alpha & \delta \\
\gamma & \sigma
\end{array}\right]}_{C}\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where

$$
\begin{align*}
\alpha & =\sin \beta \ell-\sinh \beta \ell-\frac{M_{r}}{\rho A} \beta(\cos \beta \ell-\cosh \beta \ell) \\
\delta & =-\cos \beta \ell-\cosh \beta \ell-\frac{M_{r}}{\rho A} \beta(\sin \beta \ell-\sinh \beta \ell) \tag{2.26}\\
\gamma & =\cos \beta \ell+\cosh \beta \ell \\
\sigma & =\sin \beta \ell+\sinh \beta \ell \\
\beta^{2} & =\omega \frac{\sqrt{\rho A}}{E I} \tag{2.28}
\end{align*}
$$

For the SCOLE system, the following parameters have been supplied ${ }^{8}$:

$$
\begin{aligned}
& \rho A=0.09556 \text { slugs } / \mathrm{ft} \\
& E I=4.0 \times 10^{7} 1 \mathrm{~b}-\mathrm{ft}^{2} \\
& M_{\mathrm{r}}=(400 / 32.2) \mathrm{slugs} \\
& \ell=130 \mathrm{ft} .
\end{aligned}
$$

For non-trivial solutions for A and B, det C must vanish. The values of β for which det $C=0$ are computed and substituted back into Eq. (2.28) to obtain the frequencies of the different vibrational modes (Table 2.1).

The same values of β are substituted into $\phi(x)$, (Eq. 2.23), which is normalized with respect to its maximum value and the normalized mode shapes plotted (see Table 2.1 and Figs. 2.2-2.6). Note that the ranges of frequencies obtained in Table 2.1 are higher then those prevously presented in the April 13, 1984 oral presentation due to previous inconsistencies in dimensional analysis of some physical units.

Fig. 2.1. SCOLE System Geometry in the Deformed State (2-D)

TABLE 2.1

Values of β and Natural Frequencies (HZ) for the First 8 In-Plane (Pitch) Bending Modes

B
1.874599
4.6929
7.8519
10.997
14.1309
17.276
20.4229
23.555
$\omega(\mathrm{Hz})$
.677828
4.245
11.884
23.3128
38.4933
57.5283
80.4045
106.958

1. Hale, A.L., and Lisowski, R.J., "Optimal Simultaneous Structural and Control Design of Maneuvering Flexible Spacecraft," Fourth VPI \& SU/AIAA Symposium on the Dynamics and Control of Large Structures, Blacksburg, Virginia, June 6-8, 1983.
2. Bainum, P.M., Reddy, A.S.S.R., Krishna, R. and Diarra, C.M., "The Dynamics and Control of Large Flexible Space Structures-VI," Final Report, NASA Grant: NSG-1414, Supp1. 5, September 1983.
3. Bainum, P.M., Reddy, A.S.S.R., and Krishna, R., "On the Controllability and Control Law Design for an Orbiting Large Flexible Antenna System," 34th International Astronautical Congress, Budapest, Hungary, October 10-15, 1983, Paper No. IAF 83-340.
4. Montgomery, R.C., Horner, G.C., and Cole, S.R., "Experimental Research on Structural Dynamics and Control," Proceedings of the Third VPI \& SU/AIAA Symposium on the Dynamics and Control of Large Flexible Spacecraft, Blacksburg, Virginia, June 15-17, 1981, pp. 365-377.
5. Taylor, L.W., Jr., and Balakrishnan, A.V., "A Laboratory Experiment Uded to Evaluate Control Laws for Flexible Spacecraft...NASA/IEEE Design Challene (SCOLE)," Fourth VPI \& SU/AIAA Symposium on Dynamics and Control of Large Structures, Blacksburg, Virginia; June 6-8, 1983.
6. Likins, P.W., "Dynamics and Control of Flexible Space Vehicles," Technical Report 32-1329, Revision I, Jet Propulsion Laboratory Pasadena, California, January 15, 1970.
7. Armstrong, E.S., ORACLS, A Design System for Linear Multivariable Control, Marcel Dekker, Inc., New York and Basel, 1980.
8. Taylor, L.W., Jr., and Balakrishnan, A.V., "A Mathematical Problem and a Spacecraft Control Laboratory Experiment (SCOLE) used to Evaluate Control Laws for Flexible Spacecraft... NASA/IEEE Design Challenge, January 1984.

Fig. 2.2

Fig. 2.3

Fig. 2.4

Fig. 2.5

Fig. 2.6

III. STABILITY OF LARGE SPACE STRUCTURES WITH INPUT DELAYS

The linear equations of motion of any large space structure can be developed in the standard state space form as:

$$
\begin{equation*}
X(t)=A X(t)+B U(t) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{X}= & \mathrm{nxl} \text { state vector representing attitude angles, modal } \\
& \text { coordinates for vibration problems, etc., }
\end{aligned}, \begin{aligned}
\mathrm{U}= & \mathrm{mxl} \text { control vector } \\
\mathrm{A}= & \mathrm{nxn} \text { system matrix } \\
B= & \mathrm{nxm} \text { control influence matrix. }
\end{aligned}
$$

U.sing modern control theory, a state variable feedback control law of the form

$$
\begin{equation*}
U(t)=-K X(t) \tag{3.2}
\end{equation*}
$$

can be developed by proper selection of the feedback gain matrix, K, such that system (I) with control will exhibit required characteristics in terms of transient response, pole location or some performance under optimization.

One of the main characteristics of large space structures is the large value of n (in the range of 100 's). This large value of n will dictate the use of on-board computers to evaluate u at every instant of time. In theory it is assumed the u at time $t=t_{i}$ can be instantaneously evaluated using X 's at $t=t_{i}$. In reality there will be a finite time lag between the determination of the X 's and the realization of the corresponding U's. Taking into account this delay, the equations of motion with control can be written more realistically as:

$$
\begin{equation*}
\dot{X}(t)=A X(t)-B K X(t-\tau) \tag{3.3}
\end{equation*}
$$

The delays considered here may as well account for actuator delays, control system delays, etc. in addition to computational delays.

In this report, a preliminary investigation has been carried out to study the stability of the control law designed without taking these delays into consideration.
III.A Stability Analysis - Time Domain

Following the analysis developed in reference 3.1 , the system given by equation (3.3) is asymptotically stable if and only if
$-\mu(\mathrm{A})>||\mathrm{B}||$
where $\quad \mu(A)=$ largest characteristic root of $\frac{1}{2}\left(A+A^{*}\right)$
$\begin{aligned}||B||= & \text { square root of the largest characteristic root } \\ & \text { of } B^{*} B\end{aligned}$
A^{*}, B^{*} are conjugate transposes of A and B.
This stability criteria can be extended to composite linear systems (since mathematical models of large space structures can be viewed as composite systems, as will be demonstrated later) as follows:

The system equations can be written as

$$
\begin{align*}
\dot{X}_{i}(t)=A_{i} X_{i}(t)+ & B_{i} U_{i}(t) \tag{3.5}\\
& i=1,2, \ldots m
\end{align*}
$$

with $\quad U_{i}(t)=\sum_{j=1}^{m} C_{i j} X_{j}(t-\tau)$
where

$$
X_{i} \text { is an } n(i) x 1 \text { state vector }
$$

U_{i} is an $\ell(i) x l$ control vector.

The closed loop equations can be written as:

$$
\begin{array}{r}
\dot{X}_{i}(t)=A_{i} X_{i}(t)+\sum_{\substack{j=1 \\
i=1,2, B_{i} \\
C_{i j} \\
X_{j}}}(t-\tau) \tag{3.7}\\
m m .
\end{array}
$$

After identifying the following matrices as:

$$
\begin{aligned}
& M=\operatorname{Diag} \quad\left[\mu\left(A_{i}\right)\right] \\
& N=n_{i j}
\end{aligned}
$$

where $n_{i j}=\left\|B_{i} C_{i j}\right\|, i=j$

$$
\left\|B_{i} C_{i j}\right\|, i \neq j,
$$

the stability of the composite systems described by equation (3.5) with the control given in equation (3.6) can then be defined as follows:

The system (3.5) is asymptotically stabile if and only if any one of the following conditions is satisfied:
(1) all the leading principal minors of the matrix, $-(M+N)$, are positive
(2) $-\tilde{\mu}>P(N)$ where $\tilde{\mu}=\max _{i} \mu\left(A_{i}\right)$ and $P(N)$ denotes the Perron root of the matrix, N.
(3) $-\underset{\sim}{n}>\|N\|$.

The Perron root of a matrix is defined as follows:
Let $A=\left(a_{i j}\right)$ be an nxn matrix with all $a_{i j}>0$. Then A has a positive eigenvalue, ρ, of multiplicity, one, with $\rho>\left|\lambda_{i}\right|$ for all the other eigenvalues of A. This eigenvalue, ρ, has an eigenvector all of whose components are positive. Then ρ is known as the Perron root of the matrix.

The stability criteria can be extended to the study of large space structures by identifying the cooresponding matrices as:

$$
\begin{aligned}
A_{i} & =\left[\begin{array}{cc}
0 & 1 \\
-\omega_{i}^{2} & 0
\end{array}\right] & \text { where } \omega_{i}=i^{t h} \text { modal frequency } \\
B_{i} C_{i j} & =\left[\begin{array}{cc}
0 & 0 \\
-p_{i j} & -k_{i j}
\end{array}\right] & \\
\mu\left(A_{i}\right) & =\frac{1-\omega_{i}^{2}}{2} & \text { if } \omega_{i}^{2}<1 \\
\mu\left(A_{i}\right) & =\frac{\omega_{i}^{2}-1}{2} & \\
\left\|B_{i} C_{i j}\right\| & =\sqrt{p_{i j}^{2}+k_{i j}^{2}} &
\end{aligned}
$$

So the M and N matrices are given by:

$$
\begin{aligned}
& M=\left[\begin{array}{ccccc}
\frac{1-\omega_{1}^{2}}{2} & \text { or } \frac{\omega_{1}^{2}-1}{2} & & & \\
& \ddots & & \\
& & & \frac{1-\omega_{\mathrm{m}}^{2}}{2} & \text { or } \\
& & \frac{\omega_{\mathrm{m}}^{2}-1}{2}
\end{array}\right] \\
& N=\left[\begin{array}{l}
\sqrt{p_{11}^{2}+k_{11}^{2}} \\
\sqrt{P_{n 1}^{2}+k_{n 1}^{2}}
\end{array}\right. \\
& \left.\begin{array}{l}
\sqrt{p_{i n}^{2}+k_{i n}^{2}} \\
\sqrt{p_{n n}^{2}+k_{n n}^{2}}
\end{array}\right]
\end{aligned}
$$

With the application of any one of the three stability conditions it can be concluded that the system can not be stable under a delayed input as the original system without feedback is an oscillatory system in the case of large space structures. In the literature [Ref. 3.1 and Ref. 3.3] it is concluded that for systems with delayed inputs to be stable, the systems without these delays must be stable. No comments were made on the systems which are originally marginally stable. This preliminary investigation shows that even the oscillatory systems whose state variable feedback control laws are designed without taking delays into consideration in the model may not be stable.

This preliminary conclusion has led us to examine other forms of stability considerations for systems with input delay. In the following pages, Routh-Hurwitz stability criteria as applied to delay systems will be considered for the case of the large space structures.

III.B Stability Analysis - Frequency Domain:

In the literature [Ref. 3.2 and 3.3] the stability analysis in the frequency domain is carried out either by approximating $e^{-s h}$ by a rational function in s or evaluating the unknown parameters such as feedback gain, etc. such that stability is assured with the delays present.

The stability analysis in the frequency domain using Routh-Hurwitz criteria is performed as follows:

The characteristic equation of the system described by equation (3.3) is written as
determinant of $\left[S I-A-\mathrm{Be}^{-\tau s}\right]=0$

For the system (3.3) to be asymptotically stable equation (3.8) must have all the roots in the left hand side of the s plane. Equation (3.8) is a polynomial of infinite degree. One way to approximate equation (3.8) is to replace $e^{-\tau s}$ by a rational function of the type

$$
\begin{equation*}
\mathrm{e}^{-\tau s}=\frac{1-\ddot{T s}{ }^{2}}{1+\mathrm{Ts}} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{array}{r}
\tau=\frac{4}{\hat{\omega}}\left(\tan ^{-1} \hat{\omega} T+K \frac{\pi}{2}\right) \tag{3.10}\\
K=0,1,2, \ldots
\end{array}
$$

with ω being the root of equation (3.8) and equation (3.11) given below:

$$
\begin{equation*}
\left|S I-A-B \frac{1-T s^{2}}{1+T s}\right|=0 \tag{3.11}
\end{equation*}
$$

The maximum delay that can be tolerated by the system can be obtained from the relation

$$
\begin{equation*}
h_{\max } \triangleq \min _{i}\left\{\frac{4}{\omega_{i}} \tan ^{-1} \quad\left(\omega_{i} T_{i}\right)\right\} \tag{3.12}
\end{equation*}
$$

where ω_{i} are all the roots of equation (3.11) and T_{i} are the corresponding values ${ }_{\text {of }} T$.

This technique can be applied to systems of moderate dimensionality. For large space structures the determination of the range of I for which the roots of equation (3.11) won't cross the imaginary axis into the right hand side of the s plane may become computationally prohibitive.

In Reference 3.3 stability analysis in the frequency domain with delay is approached in a slightly different manner. The characteristic equation of a system with delay is written as

$$
\begin{equation*}
e^{-\tau s}=\frac{K N(s)}{D(s)} \tag{3.13}
\end{equation*}
$$

where K is the gain $N(s)$ is the numerator polynomial $D(s)$ is the denominatcr polynomial

A preselected value of $s(\sigma+j \omega)$ which gives the required damping and frequency for the closed loop system and the corresponding values, K, and some other adjustable parameters of the system are evaluated. It is clearly stated in reference 3.3 that this analysis is valid only for systems which are stable without the feedback. The marginally stable systems are not considered.

Conclusions:

The time domain approach is easy to implement for analyzing the stability of systems with delay in feedback. The analysis shows that marginally stable or oscillatory systems can not be stabilized using feedback.

The Routh-Hurwitz criteria and the design approach of reference (3.3) may become computationally unattractive for large space structure systems which are characterized by hundreds of modes to describe vibrations adequately:

At this stage, it is not completely conclusive that oscillatory systems which characterize the vibrations of large space structural systems can be made stable or not with delayed feedback. A further literature survey and numerical computation will be carried out during the grant period of 1984-1985 to arrive at definitive conclusions about the stability of large space structures with input delays.

References

3.1 Mori, T., Fukuma, N. and Kuwahara, M., "Simple Stability Criteria for Single and Composite Linear Systems with time delays," Int. J. Control., Vol. 34, No. 6, 1981, pp. 1175-1184.
3.2 Thowsen, A., "The Routh-Hurwitz Method for Stability Determination of Linear Differential-Difference Systems," Int. J. Control, Vol. 33, No. 6, 1981, pp. 991-995.
3.3 Gates, Jr., O.B., and Schy, A.A., "A Theoretical Method of Determining the Control Gearing and Time Lag Necessary for a Specified Damping of an Aircraft Equipped with a ConstantTime Lag Auto Pilot," NACA Technical Note 2307, March 1951.
IV. CONTROL OF AN ORBITING FLEXIBLE SQUARE PLATFORM IN THE PRESENCE OF SOLAR RADIATION

Abstract

A mathematical model for the solar radiation forces and moments acting on a square plate (platform) in orbit is obtained by considering the plate mode shapes as combinations of free-free beam shape functions. The moment expressions for a plate of arbitrary reflectivity coefficient are obtained as a function of the solar incidence angle. It is seen that only the first three flexible modes of the plate generate a first order net moment about the center of mass, and that the solar radiation pressure does not influence the flexible modes of the plate for small amplitude vibrations. The solar radiation disturbance model is then included in the dynamic model of a square plate nominally oriented along the local vertical and having the major surface of the plate normal to the orbital plane. The roll angle of the plate is seen to increase steadily due to the solar radiation pressure whereas the pitch and yaw motions oscillate with an amplitude of approximately 0.2 degrees for a 100 m square thin aluminum plate in synchronous orbit. To control the shape and orientation of the plate two point actuators are assumed - one whose force axis is normal to the plane of the plate, the second with a force axis in the plane of the plate. The control law and the feedback gain values are obtained based on linear quadratic Gaussian methods. Transient responses and control requirements are simulated for local vertical and horizontal orientations.

1. Introduction

Proposed future applications of large space structures require control of the shape and orientation of the structure in orbit. It has been shown previously (Ref. 1), considering a long, thin and uniform beam, that the principal envitonmental disturbance acting on these structures could be due to the solar radiation prassure. In the present work the dynamics of a more important basic structure, namely, a thin, homogeneous and flexible square plate exposed to solar radiation disturbance will be considered. The force and moment expressions as given by Karymov (ミ.ef. 2) will be used to obtain the expressions for solar radiation disturbing forces and moments acting on the free-free square plate in orbit. The dynamics of suci: a plate nominally oriented along the local vertical was considered earlier, disregariing the environmental disturbances (Ref. 3). In the present study it is proposed toreconsider the dynamics of the plate nominally oriented along the local vertical/iorizontal with the solar radiation force and moment expressions included in the dynami: model.

The mode shapes and the frequencies of the plate are obtained using the finite element program, STRUDL (Ref. 4). To obtain expressions for solar radiatio.. forces and moments, it is convenient to express the mode shapes of the plate as a conbination of the mode shapes of a free-free beam (Ref. 5). The first five nodes of the
plate will be considered for study here. The plate is assumed to have only small transverse vibrations, so that the shadowing of the plate due to any deflected part of the plate can be neglected. The small deflection assumption also allows the superfosition of the beam mode shapes in representing the deformations of the plate.
2. Solar Radiation Forces and Moments Acting on a Thin Homogeneous Flexible Square Plate
Fig. 1 shows a square plate exposed to solar radiation. Let \bar{n} denote the outward unit vector normal to the surface, $d s$, and let $\bar{\tau}$ be the unit vector in the direction of solar radiation denoted as

$$
\begin{equation*}
\bar{\tau}=a_{o} \bar{i}+b_{o} \bar{j}+c_{o} \bar{k} \tag{I}
\end{equation*}
$$

The direction cosines of $\bar{\tau}$, namely, a_{0}, b_{0} and c_{0}, can be expressed in terms of the solar incidence angles, θ_{i} and ψ_{i}, (defined in Fig. 1) as

$$
\begin{equation*}
a_{0}=\sin \theta_{i} \cos \psi_{i} ; b_{0}=\sin \theta_{i} \sin \psi_{i} ; c_{0}=\cos \theta_{i} \tag{2}
\end{equation*}
$$

Then, the solar radiation force, $\overline{\mathrm{F}}_{\mathrm{a}}$, and the moment, $\overline{\mathrm{N}}_{\mathrm{a}}$, on a completely absorbing surface are given by (Ref. 2)

$$
\begin{equation*}
\bar{F}_{a}=-h_{o} \bar{\tau}_{s} \bar{\tau} \cdot \bar{n} \mathrm{ds} \tag{3}
\end{equation*}
$$

and $\bar{N}_{a}=h_{o} \bar{\tau} \times \int_{s} \bar{R}(\bar{\tau} \cdot \bar{n}) d s$
where, $h_{0}=4.64 \times 10^{-6} \mathrm{Nt} / \mathrm{m}^{2}$ is a constant for near earth space structures. The integration over the area, s, is bounded by the condition.

$$
\begin{equation*}
\bar{\tau} \cdot \bar{n} \leq 0 \tag{5}
\end{equation*}
$$

The force, $\overline{\mathrm{F}}_{\mathrm{r}}$, and moment, $\overline{\mathrm{N}}_{\mathrm{r}}$, acting on a completely reflecting surface can be developed as (Ref. 2)

$$
\begin{align*}
\overline{\mathrm{F}}_{\mathrm{r}} & =-2 h_{0} \int_{s} \overline{\mathrm{n}}(\bar{\tau} \cdot \overline{\mathrm{n}})^{2} \mathrm{ds} \tag{6}\\
\text { and } \overline{\mathrm{N}}_{\mathrm{r}} & =2 \mathrm{~h}_{0} \int_{s} \overline{\mathrm{n} \times r}(\bar{\tau} \cdot \bar{n})^{2} \mathrm{ds} \tag{7}
\end{align*}
$$

where, \bar{R} is the position vector of ds with respect to the center of mass of the plate. For a surface with an arbitrary reflection coefficient, ε_{r}, the force and moment expressions become (Ref. 2):

$$
\begin{equation*}
\bar{F}_{\varepsilon r}=\bar{F}_{a}+\varepsilon_{r}\left(\bar{F}_{r}-\bar{F}_{a}\right) ; \bar{N}_{\varepsilon r}=\bar{N}_{a}+\varepsilon_{r}\left(\bar{N}_{r}-\bar{N}_{a}\right) \tag{8}
\end{equation*}
$$

The shape function of a rectangular plate can be represented as a product of the two beam functions given by (Ref. 5), considering only the transverse vibration,

$$
\begin{equation*}
Z_{m, n}(x, y)=\theta_{n}(x) \psi_{m}(y) \tag{9}
\end{equation*}
$$

θ and ψ are the free-free beam shape functions given by

$$
\begin{equation*}
\theta_{n}(x)=\sigma_{n}\left(\sin \Omega_{n} x+\sinh \Omega_{n} x\right)+\cos \Omega_{n} x+\cosh \Omega_{n} x ; \text { for } n=2,3,4 \ldots \tag{10}
\end{equation*}
$$

where, $\sigma_{n}=\left(\cos \Omega_{n}-\cosh \Omega_{n}\right) /\left(\sinh \Omega_{n}-\sin \Omega_{n}\right) ; \sigma_{n}(x) \equiv \psi_{n}(y)$
and $\theta_{n}(x)=1-2 x$ for $n=1$
$=a$ constant for $n=0$
For a square plate, certain special modes which are combinations of the nodes of 2 rectangular plate are of interest (Ref. 5). The frequency expressions for such modes are also given in Ref. 5. The first five modes of a square plate in which the secc.d and third modes represent special combinations of "beam modes" (ins. 2) are considered in the present study.

A unit normal to the surface, \bar{n}, is given by,

$$
\begin{equation*}
\bar{n}=a_{1} \bar{i}+b_{1} \bar{j}+c_{1} \bar{k}=[(\psi(d \theta / d \xi) \bar{i}+\theta(d \psi / d \eta) \bar{j}-\bar{k})] / \sqrt{(\psi d \theta / d \xi)^{2}+\theta(d \psi / d \eta)^{2}+1} \tag{11}
\end{equation*}
$$

((ξ, η, ζ) are non-dimensional coordinates in the x, y, z directions, respectively.) The position vector, \bar{R}, is represented as,

$$
\begin{equation*}
\bar{R}=\left(\xi-\frac{1}{2}\right) \bar{i}+\left(\eta-\frac{1}{2}\right) \bar{j}+z \overline{\mathrm{k}} \tag{12}
\end{equation*}
$$

Eqs. (1), (11) and (12) are substituted into Eq. (4) and then the resulting integrals are evaluated to obtain the expression for the moment acting on a plate having a completely absorbing surface as,

$$
\begin{align*}
\bar{N}_{a}= & -h_{0} \ell^{2}\left[\left\{b_{0} s_{3}-c_{0}\left(s_{2}-s_{4} / 2\right)\right\} \bar{i}+\left\{c_{0}\left(s_{1}-s_{4} / 2\right)-a_{0} s_{3}\right\} \bar{j}\right. \\
& \left.+\left\{a_{0}\left(s_{2}-s_{4} / 2\right)-b_{0}\left(s_{1}-s_{4} / 2\right)\right\} \bar{k}\right] \tag{13}
\end{align*}
$$

where, $\quad s_{1}=\int_{s} \xi_{c} d \xi d \eta \quad s_{2}=\int_{s} \eta s_{c} d \xi d \eta \cdot s_{3}=\int_{s} \zeta s_{c} d \xi d \eta$

$$
s_{4}=\int_{s} s_{c} d \xi d \eta \quad s_{c}=\left(a_{0} \psi_{m} \frac{d \theta_{n}}{d \xi}+b_{0} \theta_{n} \frac{d \psi_{m}}{d \eta}-c_{0}\right)
$$

The integrals s_{1} to s_{4} can be evaluated analytically. The moment expressions are obtained for the first five plate modes (Fig. 2) by evaluating s_{1} to s_{4} for combinations of corresponding (m, n) modes and are given as,

$$
\begin{align*}
\bar{N}_{a} & =\frac{h_{0} \ell^{2}}{3}\left[a_{0} c_{0} \bar{i}-b_{0} c_{0} \bar{j}+\left(b_{0}^{2}-a_{o}^{2}\right) \bar{k}\right] z_{1} \text { (for mode I) } \\
& =h_{0} l^{2} c_{0}\left[b_{0} \bar{i}+a_{0} \bar{j}\right] z_{2}(\text { for mode II) } \\
& =h_{0} \ell^{2} c_{0}\left[b_{0} \bar{i}-a_{0} \bar{j}\right] z_{3}(\text { for mode III) } \\
& =0,(\text { for modes IV and } V \text {) } \tag{14}
\end{align*}
$$

where, z_{1}, z_{2} and z_{3} are deflections at one corner of the plate associated with the I, II and III modes, respectively.

The moment due to solar radiation pressure, $\overline{\mathrm{N}}_{r}$, acting on a completely reflecting surface is obtained by substituting Eqs. (11), (12) and (1) into Eq. (7). The resulting integral is simplified to obtain the expression,

$$
\begin{equation*}
\bar{N}_{r}=2 h_{o} \int_{s}\left[\left(a_{2} \zeta-a_{3} \eta^{i}\right) \bar{i}+\left(a_{3} \xi^{\prime}-a_{1} \zeta\right) \bar{j}+\left(a_{1} \eta^{\prime}-a_{2} \xi^{\prime}\right) \bar{k}\right] s_{c} d \xi d \eta \tag{15}
\end{equation*}
$$

where, $\xi^{\prime}=\xi-0.5$ and $\eta^{\prime}=\eta-0.5$
Eq. (15) involves complicated integrals and to find an analytical solution is very difficult. Instead, a numerical evaluation of the integrals involving different nodes are carried out and the results are shown in Fig. 3. The plate dimension is considered to be $100 \mathrm{~m} \times 100 \mathrm{~m}$ and the deflection at the comer of the plate for each mode is assumed to be $z_{1}=z_{2}=z_{3}=1.0 \mathrm{~m}$. Similar results are also obtained for a plate having a completely absorbing surface using Eq. (14). The solar incidence angle, θ_{i}, is varied from 0 to 90°, with $\psi_{i}=0$. Only the first three modes give rise to appreciable moments for both the completely absorbing and completely reflecting surfaces. The magnitudes of the moments are seen to be an order of magnitude higher ($2 \times 10^{-2} \mathrm{Nt}-\mathrm{m}$) for a completely absocioing surface as compared with the case of a completely reflecting surface ($10^{-3} \mathrm{Nt}-\mathrm{m}$). The moments due to modes II and III, and for both completely reflecting anc completely absorbing surfaces, can be visualized as extensions of the result ojtained for the case of the beam (Ref. 1).

Based on the numerical results shown in Fif. 1 , in which ψ_{i} is varied छrom 0 to 90° (not shown) the moment expressions for a completely reflecting plat be written as,

$$
\begin{align*}
\bar{N}_{r} & =h_{1} c_{0}\left(a_{0} \bar{i}-b_{o} \bar{j}\right) z_{1} & & \text { (for mode I) } \\
& =h_{2} c_{0}\left(b_{o} \bar{i}-a_{0} \bar{j}\right) z_{2} & & \text { (for mode II) } \\
& =h_{2} c_{0}\left(b_{0} \bar{i}-a_{0} \bar{j}\right) z_{3} & & \text { (for mode III) } \tag{16}
\end{align*}
$$

where, $h_{1}=3.25 \times 10^{-4}$ and $h_{2}=1.09 \times 10^{-3}$
Eq. (16) is found to be valid for magnitudes of z_{1} to z_{3} up to 0.012 . The moments about the x, y and z axes are obtained by collecting the coefficients of \bar{i}, \bar{j} and \bar{k}, respectively, from Eqs. (14) and (16) as,

$$
\begin{align*}
& N_{a x}=h_{3}\left\{\left(a_{0} / 3\right) z_{1}+b_{0}\left(z_{2}+z_{3}\right)\right\} ; N_{a y}=-h_{3}\left\{\left(b_{0} / 3\right) z_{1}+b_{0}\left(z_{3}-z_{2}\right)\right\} \\
& N_{a z}=\left(h_{3} / 3\right)\left(b_{0}^{2}-a_{0}^{2}\right) z_{1} ; \text { where } h_{3}=h_{0} l^{2} c_{0} \tag{17}\\
& N_{r x}=c_{0}\left\{h_{1} \dot{a}_{0} z_{1}+h_{2} b_{0}\left(z_{2}-z_{3}\right)\right\} ; N_{r y}=-c_{0}\left\{h_{1} b_{0} z_{1}+h_{2} a_{0}\left(z_{2}-z_{3}\right)\right\} ; N_{r z}=0 \tag{18}
\end{align*}
$$

Eqs. (17) and (18) are now substituted into Eq. (8) to obtain the moment acting on a plate with a surface of general coefficient of reflectivity, ε_{r}.

3. Modal Forces Due to Solar Radiation Pressure

The effect of the disturbance on the generic mode is obtained by evaluating the integral (Ref. 6).

$$
\begin{equation*}
E_{\mathrm{n}}=\int \mathrm{z}(\mathrm{x}, \mathrm{y}) \cdot \overline{\mathrm{k}} \cdot \mathrm{~d} \overline{\mathrm{~F}} \tag{19}
\end{equation*}
$$

where, $\overline{d F}$ represents the force due to solar radiation pressure per unit area. Also

$$
\begin{equation*}
E_{n}=E_{n a}+\varepsilon_{r}\left(E_{n r}-E_{n a}\right) \tag{20}
\end{equation*}
$$

Eq. (3) is substituted into Eq. (19) and after evaluating the resulting integrals, $E_{n a}$ is found to be equal to zero for all modes of the plate. Eq. (6) is used in Eq. (19) to get

$$
\begin{equation*}
E_{n r}=2 h_{0} \int\left[z\left(a_{0} a_{1}+b_{o} b_{1}+c_{0}\right) /\left(a_{1}^{2}+b_{1}^{2}+1\right)\right] d \xi d n \tag{21}
\end{equation*}
$$

The slopes, $d \theta_{n} / d \xi$ and $d \psi_{n} / d_{n}$, are assumed to be very small so that $a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \simeq 1$. Thus, the integral in Eq. ${ }^{n}(21)$ can be easily evaluated to show that $E_{n r}{ }^{1} \frac{1}{1} \frac{1}{a}$ also equal to zero for all modes of the plate. Hence, the solar radiation pressure does not give rise to any generic force. The results obtained can now be used in the dynamic model of a flexible plate in the orbit.
4. Effect of Solar Radiation Pressure on a Plate Nominally Oriented Along the Local Vertical
The major surface of the plate is assumed to be perpendicular to the orbital plane (Fig. 4). From the general formulation of Refs. 3 and 5, the equations of motion of the structure are obtained, under the assumption that the transverse deformations are small compared to the characteristic length of the plate. The linearized equations of motion are given by (Ref. 3),

$$
\begin{align*}
& \ddot{\psi}=-2 \omega_{c} \dot{\phi}+\omega_{c}^{2} \psi+N_{x} / J_{x} ; \ddot{\phi}=\omega_{c} \dot{\psi}+N_{y} / J_{y} ; \ddot{\theta}=-3 \omega_{c}^{2} \theta+N_{z} / J_{z} ; \\
& \varepsilon_{n}+\left(\Omega_{n} / \omega_{c}\right)^{2} \varepsilon_{n}=0 \tag{22}
\end{align*}
$$

where ψ, ϕ, and θ refer to the yaw, roll, and pitch modes, respectively, ω is the orbital angular rate, Ω_{n} is the nth modal frequency, ε_{n} is the non-dimensional codal amplitude, and $J_{x, y, z}$ are the principal plate moments of inertia.

The roll and yaw equations of motion are coupled to each other and the characteristic equation shows a double pole at the origin indicating instability in the roll-yaw motion. However, for an initial condition of $\psi(0)=\phi(0)=0$, the roll and yaw motions will not build up. To study the effect of solar radiation disturbance, a 100 m . square plate whose fundamental frequency is ten times the orbital frequency is considered. Only the first three flexible modes are included in the dynamic model
with initial conditions of 0.01 in each mode. The transient response of the piate under the influence of solar radiation pressure is shown in Fig. 5. The torque about the normal to the plate due to the first modal amplitude acts in one direction only (Eq. (14) for $\psi_{i}=0$: as the solar incidence angle changes in the orit, it is seen that the cyclic contribution due to $N_{a x}$ averages to zero. This torque induces a steady drift in the roll angle ($\simeq 1.5^{\circ}$ in 6 orbits). The yaw motion is seen to be oscillating with a very small amplitude (0.3°). The solar radiation pressure disturbance also induces a small amplitude (0.03°) pitch oscillation. The modal oscillations (not shown) are unaffected in the presence of the solar radiation disturbance. The magnitude of the pitch, roll, and yaw angular motions due to the solar radiation pressure are small because of the stabilizing gravitygradient forces acting on the plate.

Active control of the flexible platform nominally oriented along the local vertical may be accomplished by using two reaction jets, f_{1} and f_{2}, as illustrated in Fig. 2. Actuator f_{2} is assumed to thrust normal to the undeflected plate, whereas f_{1} has its thrust axis in the major plane and normal to one of the edges. Control laws are synthesized based on linear quadratic Gaussian techniques (Ref. 7). The effect of including the solar radiation disturbance on the closed-loop dynamic response is illustrated in Fig. 6 where the initial conditions are identical to those in Fig. 5. For this case the solar disturbance is seen to have little effect on the closed-loop response. The roll motion is now seen to be characterized by a damped oscillation. When the flexibility of this plate was increased (reducing the fundamental plate frequency to only 3 times the orbital rate), it was seen that the main effect was to increase the control effort by about 10 percent.
5. Effect of Solar Radiation Pressure on a Plate Nominally Oriented in the Local Horizontal Plane
For this case the undeflected major surface of the platform is nominally perpendicular to the local vertical. Such a structure could be gravitationally stabilized by attaching a rigid light weight dumbbell at the center by a spring loaded hinge which could also provide viscous damping (Fig. 7). The linearized equations of motion for a plate connected to a two-degree-of-freedom gimballed dumbbeli were developed and a related stability analysis provided in Ref. 8.

The closed loop transient response for this system with initial modal displacements in the first five flexible modes is illustrated in Fig. 8. For this case the fundamental flexible modal frequency was reduced to three times the orbital rate. The feedback gain values were obtained by the application of the linear quadratic Gaussian method by taking the state penalty matrix, $Q=1001$, and the control penalty matrix, $\mathrm{P}=\mathrm{I}$ ($I=$ appropriately dimensioned unit matrix). The pitch and the yaw motions are seen to be characterized b_{y} relatively large amplitude oscillations (Fig. 8a) in the presence of the solar radiation disturbance. A second set of feedback gain values is obtained by increasing the elements of the penalty matrix, Q, corresponding to the pitch and yaw states. The resulting transient response of the system is shown in Fig. 8b, for the same initial conditions as in Fig. 8a. For this case, the controlied pitch, roll, and yaw motions are seen to be relatively less sensitive to the solar radiation disturbance than for the case shown in Fig. 8a. The effect of penalizing the pitch, roll, and yaw states more heavily is reflected in the larger control effort required, which is about 10% greater than for the case shown in Fig. 8a.

6. Conclusions

The effect of solar radiation pressure interacting with a vibrating orbiting thin plate is modelled. It is seen that only the first three flexible modes of the plate generate a first order net moment about the center of mass, and that the solar radiation pressure does not influence the flexible modes of the plate for small amplitude vibrations. In the absence of control, for a symmetrical homogeneous square platform the solar pressure induces a steady angular drift about one of the (rigid) body principal axis.

For the case of extremely flexible platforms, nominally oriented in the local horizontal plane, it is seen that appreciable rigid modal amplitudes can be induced due to solar radiation, even in the presence of both active and passive control. For this situation, the versatility of the linear quadratic Gaussian techaique can be utilized to redesign control laws which provide a compromise between transient performance and control effort required.

References

1. Krishna, R. and Bainum, P.M., "Effect of Solar Radiation Disturbance on a Flexible Beam in Orbit," AIAA 2lst Aerospace Sciences Meeting, Reno, Jan. 10-13, 1983. Paper No. 83-0431; to appear, AIAA Journal.
2. Karymov, A.A., "Determination of Forces and Moments Due to Light Pressure Acting on a Body in Motion in Cosmic Space," P.M.M., No. 5, Vol. 26, 1962, pp. 867-876.
3. Reddy, A.S.S.R., Bainum, P.M., Krishna, R., and Hamer, H.A., "Control of a Large Flexible Platform in Orbit," Journal of Guidance and Control, Vol. 4, No. 6, Nov.-Dec., 1981, pp. 642-649.
4. "ICES STRUDL II, the Structural Design Language," Massachusettes Institute of Technology, V2M2, 1972.
5. Warburton, G.B., "The Vibration of Rectangular Plates," Proceedings of the Institute of Mechanical Engineers, Vol. 168, No. 12, 1954, Pp. 371-394.
6. Kumar, V.K. and Bainum, P.M., "Dynamics of a Flexible Body in Orbit," Journal of Guidance and Control, Jan.-Feb., 1980, Vol. 3, No. 1, Pp. 90-92.
7. Armstrong, E.S., "ORACLS - A System for Linear Quadratic - Gaussian Control Law Design," NASA Technical Paper 1106, April 1978.
8. Bainum, P.M. and Kumar, V.K., "Dynamics of Orbiting Flexible Beams and Platforms in the Horizontal Orientation," Acta Astronautica, Vol. 9, No. 3, 1982, pp. 119127.

Fig. 1. A Thin Plate Exposed to Solar Radiation Pressure.

Fig. 2. The First Five Mode Shapes of a Square Plate.

Fig. 3. Moment Due to Solar Radiation Pressure on a Plate ($\psi_{i}=0.0$).

Fig. 4. A Square Plate in Orbit Nominally Along the Local Vertical.
I.C.'s $\quad \psi(0)=\phi(0)=\theta(0)=0, \varepsilon_{1}(0)=\varepsilon_{2}(0)=\varepsilon_{3}(0)=0.01$

Fig. 5. Time Response of the Plate Nominally Oriented Along the Local Vertical Under the Influence of Solar Radiation Pressura.

Fig. 6. Contzollcd Response of the Plate Noainally Oriented flong the Local Vertical $\left(\omega_{1}=10.0\right)$,

Fig. 7. Dumbbell Stablized Plate,
$F_{c}=\left|\bar{F}_{1}\right|+\left|\bar{F}_{2}\right|, N t$.

Fig. 8. Time Response of Dumbbell Stabilized Plate (Control Based on LQG),

(b) $\quad \mathrm{Q}=\operatorname{diag}[100.0] \mathrm{R}=\operatorname{diag}[1.0]$ except $Q(1,1)=Q(2,2)=Q(3,3)=10,000$

V. DYNAMICS and CONTROL OF ORBITING FLEXIBLE BEAMS AND PLATEORMS UNDER THE influence of solar radtation and THERMAL EFFECTS

Abstract

Expressions for thermal deflections of uniform thin beams and plates exposed to solar heating are obtained as a function of the properties of the material and the solar incidence angle. The major effect of the solar radiation pressure interacting with the thermally deformed structure is found to give rise to disturbance moments on the structure. The themal deformations of the structures are assumed to be within 0.1% of the characteristic length of the structure. With the assumed thermal deformations, the resulting uncontrolled transient responses of these geosyncinronous orbiting structures to the solar radiation pressure induced disturbances are simulated. The resulting rigid modal osciliations are found to be an order of magnitude larger than for those cases pretiously considered in which only the solar radiation pressure effect on vibrating structures was treated. Yodifications or concrol laws and/or the feedback gain values are considered in order to improve the transient respoase characteristics under the thermally induced discurbances.

I. Introduction

The major environmental disturbances on proposed orbiting large space structural systems are expected to be due to the solar radiation pressure and solar heacing effects. The dynamics and concroi of a flexible beam and a flexible plate in the oresence of disturbances due to the solar radiation pressure acting on the vibrating structure were considered previously! ${ }^{1-3}$ It was seen that the wajoz effect of tine soiar radiacion pressure foteracting with an elastically deformed (vibrating) orbiting structure was to produce moments on the structure resuleing primarily in rigid modal oscillations. For the case of extremely flexible structures the amplitudes of these modes may be appreciable, even in the presence of both active and passive control $\frac{1}{-3}$ In some situations the control laws previously developed by ignoring environmental efiects ray have to be redesigned. For simple lower order systems feedback gain values may be suifably adjusted; nowever, for large order systems the versatility on the linear Gaussian technique can be used to redesign control laws which prooide a compromise between transient performance and the required control effort. 1-3

Another important aspect of the environmental effect is the thernal gradients resulting in the structure due to the solar radiation heating. The deformations caused by the thermal gradients can be very large resulting in the dynamic instability of the structures. ${ }^{-6}$ Furthermore, the solar radiation pressure interacting with the thermally deformed structure gives rise to another form of anvironmental disturbance. The deformations caused by the solar heating depend on the thermal properties of the material and the geometric shape of the structure. Selection of materials with desired thermal properties and careful structural designs are required to minimize the thermal deformations of the strucsure so an acceptable level. The thermal deformarions of the structure wili occur as long as the structure 1 s in the sunlit orbit and the continuous removal of this deformation using active control may not become practicable. The thermal deformations will have to be minimized by careful consideration of the thermal properties of the waterial in the preliminary structural design process. The objective of the present paper is to consider the effect of solar radiation pressure on the beams and the plates which are thermaily deilected due to solar heating. (To the authors' knowledge, this is the first attempt to incorporate such effects into the modelling and simulation of the dyamics of large flexible orbiting systems). Motions of the beams and plates about: (i) the local vertical orientation; and (it) the local hor:zontal nominal orientation (the latter carifing a rigid gimballed dumbell to provide gravity stabilization) will be considered for the study (Figs 1 and 2).

Expressions for the thermal deflections of beams and plates exposed to solar hearing will be developed. Subsequently, a mathematical model Eor the solar radiation induced torque on the thermally deflected structure will be obtained. The uncontrolled and controlled dynamics of the orbiting structures :Hill then be simulated by considering the combined effect of the solar radiation pressure on the therwally deflected and vibrating scructure. Modification of the control law and the feedback gatn values to control the shape and orientation of the structure will be proposed, where required. In this study, the statically induced thermal deflections will be assumed small relative to the characteristic structural dimensions. In addition, the other major assumptions made here are: (a) the reflected solar radiation by the earth (aibedo) can be neglected; (b) the finerent time lags in the hear transier process are very small compared with the orbital period and ara ignored; (c) the radiation from the edge surfaces can be neglected; and, ((d) the beans and places have mizorm Ehickness and thernal properties resulting in a uniform temperature distribution.

The effects of the Earth's snadow and local shadowing due to another part of the structure are not included in the study.

II. Equililbrium Temperatures of Thin Plates and Beams

The cross section of a thin plate (or a beam) exposed to solar radiation is shown in Eig. 3. The solar incidence angle, ∂_{1}, is taken to be a constant during a small interval of eime. During this interval the surface facing the sun, s_{u}, attains a temperature, T_{1}, and the surface away from the sum, s_{1}, attains a temperature, T_{2}. The equilibrium temperatures, T_{1} and T_{2}, can be determined by miting the thermal balance equations. The total heat leaving the beam from the two surfaces, s_{4} and s_{1}, should be equal to the heat received by the beam. 7 Therefore,

$$
\begin{equation*}
E_{1} \sigma T_{1}^{4}+E_{2} \sigma T_{2}^{4}=a_{3} G \cos \theta_{1} \tag{1}
\end{equation*}
$$

where,
E_{1} and E_{2} are the emissivities of the surEaces, s_{u}^{2} and s_{1}, respectively
$\sigma=$ Stefan-Boltzman constant $=56.7 \times 10^{-12} \mathrm{KW} / \mathrm{m}^{2} \mathrm{R}^{4}$
$c_{s}=$ absorptivity of the surface, s_{u}
$\mathrm{G}=$ intensity of solar radiation $=0.8 \mathrm{KW} / \mathrm{m}^{2}$
The heat flowing through the plate, at equilibrium, is also equal to the heat radiated from the surface, $s_{1} .^{7}$

$$
\begin{equation*}
E_{2} \sigma T_{2}^{4}=K\left(T_{1}-T_{2}\right) / t_{c} \tag{2}
\end{equation*}
$$

where,
$k=$ thermal conductivity ($\mathrm{KW} / \mathrm{m} \mathrm{K}$) of the plate material
$t_{c}=$ thickness of the plate
Equarions (1) and (2) can be rearranged as

$$
\begin{align*}
& T_{1}=I_{2}+\left(E_{2} \sigma t_{c} / k\right) / T_{2}^{4} \tag{3}\\
& T_{2}^{4}=\left(\alpha_{s} G \cos \theta_{1}\right) / E_{2} \sigma-\left(E_{1} / E_{2}\right) T_{1}^{4} \tag{4}
\end{align*}
$$

Eqs. (3) and (4) can now be solved to obeain T_{1} and T_{2} by assuming an approximate value of I_{1} or T_{2} and then through aumerical iteration. As suming $E_{1}=E_{2}=0.05$ and $a_{s}=0.2$ (characteristic of proposed supporting mast material for large space stiuctural systems), the temperature difference, $\mathrm{IT}=\mathrm{I}_{1}-\mathrm{I}_{2}$, is obtained as a fumction of the solar incidence angle, θ_{1}, and various parameter ratios of $k, k / t_{c}$, as shown in Eig. 4. A inigher value of k_{r} indicates a larger value of thermal conductivity and, hence, the temperature difference between the two surfaces becomes smaller. A plate of chickness 1 cm and made of polyamide $\left(k=0.25 \times 10^{-3} \mathrm{KH} / \mathrm{m} \mathrm{K}\right)$ will have a maximm temperature difference of 2.3° g. The temperature gradient is found to vary approximately proportional to $\cos \theta_{1}(518.4)$. Expressions for deflections of the plate as a function of the temperature gradient are developed in the next section.

III. Pure Bending of Thin Plates and Beams ${ }^{3}$

Fig. 5 shows a jeam of length, 2 and width, b. The cemperature or the mid-plane of the beam is denoted by T_{n}. The temperature of the surface facing the sun, s_{u}, is then $T_{n}+(\Delta T / 2)$, and the temperature of the surface, s_{1}, is given by $T_{n}-(\Delta T / 2)$. According to the theory of beam bending analyzed in Ref. 8, we nave

$$
\begin{equation*}
d^{2} z / d x^{2}=-\left(\alpha_{e} / J_{y}\right) J T y d A \tag{5}
\end{equation*}
$$

where
z is the transverse deflection of the jeam,
$a_{e}=$ coefficient of linear expansion $\begin{aligned} j_{y}= & \text { coemencient of linear expansion } \\ & \text { the } y \text { axis }\end{aligned}$

Eq. (5) is rewritten by evaluating the integral

$$
\begin{equation*}
d^{2} z / d x^{2}=-a_{e}\left(\Delta T / t_{c}\right)=a \text { constant } \tag{6}
\end{equation*}
$$

The expression for the thermal deflection is then given by

$$
\begin{equation*}
z=-\alpha_{e}\left(\Delta T / t_{c}\right) x^{2} / 2 \tag{7}
\end{equation*}
$$

The thermal deflection can be minimized by selecting a matertal with a low coefficient of expansion or ty using a material of high thernal conductivity. An increase in the thickness of the plate will increase the temperature difference (Fig. 4) and also increase the weight of the plate. Hence, the parameter, t_{c}, should be as small as possible. The orher important properties of materials not reflected in Eq. (7) are the density and the cost of the material as shown in Table 1 .? For a beam of length 100 m and thickness 0.01 m , and made of polyamide (a low density and low cost material), the maximum thermal deflection is found to be approximately 7m. If the beam is made of aluminum, the maximum deflection zould be about 2 min. Once a colerable thermal deflection is specified the material can be selected to meet the confiicting requirements of low density, high thermal conductivity, and low cost. In the next section the solar radiation pressure moment resulting from a thermally deflected beam (also applicable to a plate) is discussed.

IV. Effect of Solar Radiation Pressure on

Thermally Deifected Beams and ?lates
The moment expressions obtained by Karymor 10 are used here to develop cie solar sadiacion disturbance model for thermally deflecred beams and plates. The solar radiation moments acting on a completely absorbing_surface, $\overline{\mathrm{X}}_{\mathrm{a}}$, and a completely reflecting surface, $\overline{\mathrm{V}}_{5}$, are given by 10 ,

$$
\begin{align*}
& \bar{N}_{a}=h_{0} \bar{\tau} \times \int_{s} \bar{Z}(\bar{T} \cdot \bar{a}) d s \tag{8}\\
& \bar{X}_{y}=2 h_{0} \int_{s} \bar{n} \times \bar{R}(\bar{T} \cdot \bar{n})^{2} d s \tag{9}
\end{align*}
$$

where
$\bar{Z}=a_{0} \bar{i}+b_{0} \bar{j}+c_{0} \bar{K}$, is the incident solar radiation vector
$\overline{\mathrm{a}}=$ outward unit aormal to the elemental surface, ds
$\bar{R}=$ position vector of the surface element, ds, relative to the center of mass
$=$ solar energy constant $=4.64 \times 10^{-6} \mathrm{Nt} / \mathrm{m}^{2}$.
$=$ direction cosines of the incident solar radiation with respect to the directions x, y, z, respectively

The integration over the sunlit area, s, is
 a structure whose surface has an arbitrary coefficient of reflectivity, ε_{r}, is given by, 10

$$
\begin{equation*}
\bar{N}_{\varepsilon r}=\bar{N}_{a}+\varepsilon_{r}\left(\bar{N}_{r}-\bar{N}_{a}\right) \tag{10}
\end{equation*}
$$

The moment on a thermally deflected beam whose surface completely absorbs all the incident radiation is obtained (after evaluating the integral in Eq. (8)) as,

$$
\begin{equation*}
\bar{x}_{a}=a_{0} c_{0} \delta_{0} 2 i_{0} \bar{J} \tag{11}
\end{equation*}
$$

where,
the iacident radiation is assumed to lie in the x, y plane ($b_{o}=0$)
$b=$ width of the surface ($b \ll \ell$ for a thin beam)
$\therefore_{0}=$ maximum deflection (from Eq. (7)) $=z_{\text {max }}$
The maximum deflection, \hat{o}_{0}, can be obtained as a function of ϑ_{i} by seiecting a function to represent ΔT in Eig. 4, and then by using the function for ΔT in Eq. (7). The moment acting on a completely reflecting beam surface is obtained through numerical integration, as,

$$
\begin{equation*}
\overline{\mathrm{N}}_{r}=-0.05 \mathrm{a}_{0} c_{0} \delta_{0} \ell b \mathrm{~h}_{0} \bar{j} \tag{12}
\end{equation*}
$$

The corresponding moment expressions for a plate are obtained as

$$
\begin{align*}
& \vec{N}_{a}=c_{0} \delta_{0} 2 b h_{0}\left(b_{0} \bar{I}+a_{o} \bar{f}\right) \\
& \vec{N}_{r}=-0.05 c_{0} j_{0} 2 b h_{0}\left(b_{0} \bar{I}+a_{0} \bar{f}\right) \tag{13}
\end{align*}
$$

The moment on the structural surfaces whose coefficient of seriectivity is, ε_{r}, can then be obtained by using Eq (10) as,

$$
\begin{align*}
\bar{N}_{\varepsilon I}= & c_{1} \delta_{0} \& b h_{0}\left(b_{0} \bar{I}+a_{0} \bar{j}\right)\left[\left(1-\varepsilon_{r}\right)-0.05 \varepsilon_{r}\right] \\
& (\text { for a plate }) \\
= & \left.a_{o} c_{0} \delta_{0} \& b h_{0}\right\rfloor\left[\left(1-\varepsilon_{r}\right)-0.05 \varepsilon_{r}\right] \tag{14}\\
& \text { i三or a beam) }
\end{align*}
$$

V. Donamics and Control of Beams and Plates
inder the Influence of Solar Radiation
Disturbances due to Thermal Deformations

The dynamic models of beams and plates, 5 both こases of orioital orfentations (B igs. i and λ) developed in References 11 and 12 are considered. The nominal local horizontal orientation of jeams and plates represencs a gravitationaily unstable fotion due to che unfavorable moment of inertia discribution. Stabilizing gravity-gradiene
forces on such structures can be obtained by using a rigid dumbbell such that the resulting inertia distribution provides the desired gravity Eorces. A dumbbell may be attached to the main structure through a hinge which could provide botin corsional stiffness and damping. The dynamics of the proposed dumbbell stabilized beam and plate (Figs. la and 2a) was considered in Reference 12. Here, the study is extended to consider the disturbances resulting from the interaction of solar radiation pressure with the thermally deformed srructure. The disturbance resulting from the solar radiation pressure on the dumbiell will be neglected, since the dumbell would have a smail surface area compared with the main structure. The modified control laws and gain values developed in References 2 and 3 will be used to obtain closed-loop transient responses of these structures by incorporatIng the disturbance expressions (Eq. (14)) into the structural models of the beams and plates. $1-3,11,12$ The maximum thernal deflection for each case is assumed to be 0.0012 , based on the calculation of defiections Eor a 100 m long, $0.01 m$ thick beam made of polyamide and aluminum, respectively (Table l). The beams and plates are assumed to have a fundamental frequency equal to ten times the orbital frequency with the orbital frequency corresponding to a geosynchronous orbit. Initial conditions are assumed to be zero for ali the modes in order to highlight the thermally induced disturbance effect. For those cases in which the transient responses appear to be unacceptable further modifications in the control law and/or the gain values are proposed.

V. 1 The Beam Along the Local Verrical

The effect of the thermally induced disturbance on the pitch motion of the jeam is shown in Fig. 6(a). The disturbance (without control) has no effect on the Elexible modal oscillations and ience these are not depicted to the figure. It is seen that the pitch response has a maximum amplitude of 2.4 degrees as a resuit of the disturbance. Application of the previously developed control law and the gain vaiues ${ }^{2}$ for the case of two actuators, located at the bean center and at one of the nodal points of the first symmetric mode, shows (Fig. 6(b)) pitch amplitude oscillations of less than 0.24° amplitude. The peak control forces required are only of the order of 10^{-3} Nt. Eor each actuaror. By increasing the gain value proportional to the pitch rate by a factor of 10 , a Eurther reduction of the pitch amplitude to approximately 0.03° is iliustrated (Pig. 6(c)). Correspondingly, the peak force requirement in actuator number 1 increases to 0.01 Nt.

V. 2 The Dumbbell Scabilized 3eam

The cransient =esponse or the dumbell stabilized beam due so che solar zadiation pressure acting on the thermally deformed jeam is snown in Eig. 7 (caly the ?itch =ode is depiczed). The picch oscillations are seen so have approximately 2.40° mifitudes in the absence of =ontrol. With the appiication of the coarrol law previously dereloped in Rererence 3 (and indicared in the Eig(1re), the amplitude of the picci uscillations is reduced so 0.240 (Fiz. 7). The ?eak conerol Eorce required is about 0.01 Nt.

The gain values can easily be modified further to meet any specific requirement on the pitch motion of the beam.

V. 3 The Plate Oriented Along the Local Vertical

The uncontrolied and the controlled transient responses of the 100 m square thin plate nominally oriented along the local vertical and with the disturbance caused by the thermal deflection of the plate are shown in R1g. 8. The same order of magnitude thermal deflections are assumed here as for the beam in sections V.1 and V.2. The pitch, roll and yaw rotations of the plate exceed the linear range in less than an orbit. Application of the linear quadratic Gaussian control rechnique with the penaity matrices, $Q=100 I$ and $R=I$, results in a transient responses in which steady state oscillations with amplitudes of about 0.02 radians are seen in all three rotational modes of the plate (Fig. 8). Modal oscillations (nondimensionalized) in ail the three flexible modes remain within an amplitude of $10^{-5}\left(10^{-3}\right.$ m). An improvement in the transient response was obtained by emploving a split weighting state penalty matrix $(Q=100 \mathrm{I}$, except for $Q(1,1)=Q(2,2)=$ $Q(3,3)=10,000)$ where the rotational modes were penalized more heavily. The tramsient response. of the plate in the rotational modes for this case is sinown in Fig. 9. The steady state oscillations are reduced by an order of magnitude in conparison with Fig. 8. However, the peak control forces increased from 7 Nc. co 12 Nt. The total control effort required aiso increased by approximately 60\%.

V. 4 The DumbbelI Stabilized Plate

The closed-loop transient response of the dumboell stabilized plate is considered. The magnitude of the pitch, Foll and yaw angles are seen to be witinin $\hat{U} \cdot \hat{Z}$ radians in the absence of any solar radiation pressure induced disturbance (Fig. 10(a)). For the same case, the effect of the solar radiation pressure disturbance resulting from the thermally deformed plate ($\delta_{t h}=0.0012$, $\boldsymbol{z}=100 \mathrm{~m}$) is shown in Fig. 10(b). The pitch and the yaw oscillations are seen to exceed the innear range even with the control. The control effort required (3×10^{5} Nt. - secs.) was zearly ten times more than that for the case without the disturbance (Fig. 10(a)). The transient response characteristics for this case are therefore unacceptable.

A redesign of the control is attempted with penalty matrices selected as: $Q=10,0001$ and $\mathrm{R}=1001$. (Both the state as well as the control are now penalized more heavily by increasing both sets of elements by two orders of magnitude). The transient response of the dumbell stabilized plate with this control is shown in Eig. 11. The pitch, roll and yaw amplitudes are well within 0.02 radians even in the presence of the disturbance. The peak conerol force required is approximacely 14 NC . in both actuators (or an 3MS value of a little less than 3ONt.).

Thus, the thermal deformations of the structures can be of greater concern than the deformations of the structure due to structural vibrations (considered in Refs. 2 and 3) in modelling the disturbances arising from the solar radiarion pressure. This study shows the need to further minimize thermal deformations ($\ll 0.0012$) from the view point of reducing the radiation pressure disturbance effects. This can be accomplished with cost and strength constraints primarily by increasing the thermal conductivity.

Conclusions

The dynamics and control of themally deformed orbiting beams and plates interacting whth the solar radiation pressure are studied. The major effect of the solar radiation pressure is found to result in net moments on the structure. Modifications of control laws and/or feedback gain values previously obtained by not considering the thermal disturbances are suggested in order to improve the transient response characteristics under the thermally induced efiects.

In general, the effect of solar radiation pressure acting on the thermally deformed structures is found to be more important than the effect of solar radiation pressure on the vibrating strictures. In order to reduce the disturbances resulting from the interaction of solar radiation pressure with the thermally deformed structure, further minimization of the thermal deformations is recommended.

References

1. Krishna R. and Bainum, P.M., "Effect of Solar Radiacion Disturbance on a Flexible Beam in Orbit," ALAA Joumal, Vo1. 22, No. 5, May 1984. pp. 677-682.
2. Krishna, R. and Bainum, P.M., "Orientation and Shape Control of an Orbiting Flexible Beam Under the Influence of Solar Radiation Pressure," AAS/AIAA AsErodyoamics Conference, Lake Placid, N.Y., Aug. 22-24, 1983, Paper No. 83325; also in Astrodynamics 1983, Advances in the Astronautical Sciences, Vol. 54, Part I, pp. 221-238.
3. Bainum, D.M. and Kristina, R., "Control of an Orbiting Plexible Platform in the Presence of Solar Radiation," Fourteenth International Symposium on Space Technology and Science, Tokyo, kay 28 - Jume 2, 1984.
4. Frisch, B.P., "Mhemally Induced Response of Flexible Structures: A Yethod for Analysis," Journal of Guidance and Conersl, Vol. 3, No. 1, 1980, Pp. 92-94.
5. dyer, ミ., and Soosar, K., "Structural DistorEions of Space Systems Due to Environmental Disturbances," AIAA International Yeeting and Techaical Display, "Global Iechnology 2000," Kay 5-8, 1980, 3aitimore, Yd., ?aper No. dIMA-80-0854.
6. Shu, C.F., and Chang, Y.B., "Integrated Thernal Distortion Analysis for Satellige torenna Re-

7. Gray, W.A. and Mulier, R., Engineering Calculations in Radiative Heat Transfer, Pergamon Press, N.Y., 1974.
8. Burgreen, D., Elements of Thermal Stress Analysis, C.B. Press, N.Y., 1971.
9. Ashton, J.E., Halpin, J.C., and Petit, P.a., Primer on Composite Materials Analysis, Technomic Publication, Conn., 1970.
10. Karymov, A.A., 'Determination of Forces and Moments Due to Light Pressure Acting on a 3ody in Mocion in Cosmic Space," P.M.M., No. 5, Vol. 26, 1962, pp. 867-876.
11. Kumar, V.R. and Bainum, P.M., "Dynamics of a Flexible Body in Orbit," Ioumal of_Guidance and Control, Jan. - Feb. 1980, Vol. 3, No. 1, pp. 90-92; also ATAA Preprint No. 78-1418.
12. Bainum, P.M. and Kumar, V.K., "On the Dynamics of Large Orbiting Flexible Beams and Platforms Oriented Along the Local Eorizontal," Acta Astronautica, Vol. 9, No. 3, 1982, pp. 119-127.

Fig. 2(a) Dumbbell Stabilized Flate in Orbit.
Table I. Properties of Representative Materials ${ }^{9}$

Material	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{aligned}$	Expansion Coefficient, Σ_{e} (m/mo ${ }^{\circ}$)	Thermal Cond. R KW/m- K	$\begin{aligned} & =\text { Cost } \\ & (\$ / \mathrm{Kg}) \end{aligned}$	$\delta_{\max }$ (I)
Graphite	1.5×10^{3}	8.3×10^{-5}	8.65×10^{-3}	500	10^{-4}
Beryllium	1.8×10^{3}	3.5×10^{-6}	12.25×10^{-3}	10,000	10^{-4}
Aluminum	2.7×10^{3}	2.1×10^{-6}	28.8×10^{-3}	1.1	10^{-5}
Polyamide	1.13×10^{3}	25×10^{-6}	2.45×10^{-3}	15	7

$\bar{\sigma}_{\text {max }}$: maximum thermal deflection of a plate with sides equal to 100m and thickness equal to 0.01 m .

Fig. 3. Thermal Gradient in a Beam Due to Solar Radiation Heating.

Eig. 2(b). Plate in Orbit Nominally Oriented Along the Local Vertical.

Fig. 4. Thermal Gradient in a Beam as a Function of Solar Incidence Angle and Thermal Conductivity.

Fig. 5. Beam Bending Due to Solar Radiation deating

Fig. 6. Response of the Beam Nominally Oriented Along the Local Vertical Under the Influence of Solar Radiation Disturbance Caused by Thermal Deformation of the Beam ($\delta_{t h}=0.0018$).

- - - Without Control \qquad ivith Control
$F_{c}=-0.07 \ni-0.005 \dot{j}-0.1 \dot{\varepsilon}_{1} \quad-0.03 \dot{\varepsilon}_{2}$
(Single actuator at one end of the beam)
Eig. 7. Response of the Dumbell Stabilized Beam Under the Influence of Solar Radiacion Disturbance Caused by Thermal Deflection of the Beam ($\delta_{\text {th }}=0.0012, \lambda=100 \mathrm{~m}$).

Initial conditions in all the modes are zero. ε_{1} to ε_{3} have very small amplitudes (less than 10^{-5}) $\left(\bar{F}_{1}\right)_{\max }=7 \mathrm{Nt} . \quad\left(\mathrm{F}_{2}\right)_{\max }=6 \mathrm{Nt}$.

Fig. 8. Response of the Plate Nominally Oriented Along the Local Vertical Under the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Plate $\left(\delta_{\tau h}=0.001 \ell\right) ~ \ell=100 \mathrm{~m}$. Control Law $Q=T 00 \mathrm{~F}, \mathrm{R}=\mathrm{I}$.

Fig. 9. Response of the Plate Nominally Oriented Along the Local Vertical Onder the Influence of Solar Radiation Disturbance Caused by Thermal Deflection of the Plate $\left(\delta_{\text {th }}=0.0012\right) 2=100 \mathrm{~m}, \omega_{1}=10$

(a) without disturbance

$\varepsilon_{1}(0)=\varepsilon_{2}(0)=\cdots \cdots \varepsilon_{5}(0)=0.0\{$
Fig. 10. Response of the Dumboell Stabilized Plate Under the Influence of Solar Radiation Disturbance Caused by Thernal Deflection of the plate $\left(\delta_{\mathrm{fh}}=0.001 \ell\right) \ell=100 \mathrm{~m}, \omega_{1}=10$

(Control Based on LQR $Q=10,000 I, R=100 I$)

Fig. 11. Response of the Dumbeli Stabilized Flare Gnder the Influence of Solar Kadiation Disturbance Caused iy Thermal Deflection of the plate ($\mathrm{j}_{\mathrm{th}}=0.0011$) $2=100 \mathrm{~m}, \mathrm{u}_{1}=10$

VI. ANALYSIS OF A CONTROL SYSTEM FOR A LARGE SPACE ANTENNA SYStem In the presence of plant AND MEASUREMENT NOISE

Abstract

This paper considers the problem of controlling a stochastic linear system by minimization of a quadratic performance index, appropria亡ely weighted in both the state variables as well as the control inputs. A finite element model of a proposed large space structure - the Hoop/Colum structural system, is taken as the basis for the controls analysis. The control law is designed for a set of proposed actuator arrangements wich include torquers and point actuators along the mast and a single actuator on the hoop. Linear quadratic Gaussian techniques have been used for the development of the control laws. The controls analysis is carried out assuming colocated sensors and actuators. The sensor and plant noises are assumed to be uncorrelated zero-mean white noises. Results indicate a general degradation in the deterministic system performance due to noise characteristics. Increasing elements in the state weighting matrix does not bring as noticeable an improvement in the transient performance as it did in the deterministic case. A definitive improvement in the performance can be obtained by decreasing the plant noise and either: (1) increasing the measurement noise suitably or (2) increasing both the measurement noise and elements in the control Weighting matrix.

NOMENCLATURE

$$
\text { A } \quad=\text { System state matrix }
$$

B, B_{c}	= Control influence matrices
C	$=$ Control gain matrix
E	$=$ Expectation/value operator
F	$=$ Filter gain matrix
F_{c}	$=$ Control vector
G	$=$ Plant noise fnfluence matrix
日	$=$ Observation matrix
I	$=$ Identify matrix
J	$=$ Cost function
K	$=$ Stiffness matrix
K_{1}	$=$ Solution of steady state control Riccati differential equation
K_{i}	$=i^{\text {th }}$ generalized stiffness
M	$=$ Mass (inertia) matrix
m_{i}	$=i^{\text {th }}$ generalized modal mass
P	$=$ Solution of filter matrix Riccati differential equation
Q	$=$ Positive semi-definite state weighting matrix
q	$=$ modal co-ordinates
$\dot{q}, \stackrel{\square}{q}$	$=$ modal velocities and accelerations
R	$=$ Positive definite control weighting matrix
t_{0}	$=$ Inftial time
t_{f}	$=$ Terminal time
$u(t)$	$=$ Vector representation of the control input
$\nabla(t)$	$=$ Co-variance of measurement noise
$\underline{v}(t)$	$=$ Measurement noise vector
$W(t)$	$=$ Co-variance of plant noise
$\underline{w}(t)$	$=$ Plant noise vector
$X(t)$	$=$ State vector

$\hat{\wedge}$
$X(t)=$ State vector estimate
$Y(t)=$ Measurement vector
$z=$ Matrix consisting of displacements and rotations in the nodal
points
$\Phi \quad=$ Modal transformation matrix

I. Introduction

Orbiting large flexible space systems have been considered for use in future communications and other fields. As the size of the spacecraft increases and the ratio of weight to area of the spacecraft decreases, flexibility considerations become very important. This is in contrast to small space structures which are assumed to be rigid. One such large flexible space structure which has been proposed for future space missions is the Hoop/Column antenna system.

The Hoop/Colum antenna system ${ }^{1}$, depicted in Fig. 1 in deployed configuration, contains the deployable (telescoping) mast system connected to the hoop by support cables under tension. The hoop contains 48 rigid sections to be deployed by motor drive units. The desired shape of the RF relective mesh is produced by a secondary drawing surface using surface control cables. The reflective mesh is connected to the hoop by quartz or graphite stringers. At one end of the mast the electronic feed assemblies are positioned, whereas at the other end are the principal solar arrays connected to the main busbased control.

The finite element model (FEM) representation of the Hoop/Colum antenna system has been taken as the basis for the controls analysis.

The controls analysis of the Hoop/Colum antenna system requires specification of the type of actuators and their locations and orientations in

Fig. 1. THE HOOP / COLUMN: ANTENNA SYSTEM.
the structure. For this study point thrusters and/or torquers are assumed to generate the required control forces and torques. The location and orientation of these thrusters depend on the mode shapes of the structure and which modes in particular are to be controlled. The first thirteen modes corresponding to the data provided by NASA-Langley will be included in the controls analysis and, hence, it is convenient here, to choose thirteen actuators in this analysis. Each actuator is selected to have a principal effect on a particular mode, but the same actuator may help to control a different mode as well. Controllability considerations of the Hoop/Column system based on the proposed location of the thirteen actuators as shown in Fig. 2 have been established using graph theoretic techniques ${ }^{2}$. Further, the earlier analyses of the Hoop/Column system considered either a deterministic linear system with noise-free plant and sensors ${ }^{3}$, or a stochastic linear system (with plant and measurement noise) but with the restriction that only torque actuators on the feed mast were considered in the controls analysis ${ }^{4}$, where extensive transient performance was not simulated. The purpose of this paper is to synthesize a control law and simulate transient performance characteristics, based on stochastic optimal control theory, which can be realized by combination of the Ralman filter and linear feedback techniques and under the assumption of co-located sensors and actuators.

II. Mathematical Formulation of the Problem

The dynamic model of the Hoop/Colum structural system in the absence of damping can be represented $a s^{3}$

$$
\begin{equation*}
\ddot{M} \ddot{Z}+K Z=F_{C} \tag{1}
\end{equation*}
$$

Fig. 2 PROPOSED ARRANGEMENT OF ACTUATORS - HOOP/COLUMN ANTENNA SYSTEM
where

$$
\begin{align*}
& \text { M-672 } \times 672 \text { mass/inertia matrix } \\
& \text { K - } 672 \times 672 \text { stiffness matrix } \\
& \text { Z- } 672 \times 1 \quad \text { matrix consisting of the displacements and rotations } \\
& \text { at the nodal points } \\
& F_{c}-672 \times 1 \text { control vector } \\
& F_{c}=B_{c} U \tag{2}
\end{align*}
$$

where

$$
B_{c}-\text { control matrix of order } 672 \times p
$$

for
p - number of actuators
U - P X 1 matrix associated with the control vector
In general, 2 is the state vector containing the generalized co-ordinates of each node and will be of the order (nx6) for n number of nodes and all 6 degrees of freedom; M is the modal mass (inertia) matrix of order ($6 \mathrm{n} \times 6 \mathrm{n}$); K is the stiffness matrix of order ($6 n x \mathrm{bn}$); and B_{c} is the control influence matrix of order ($6 \mathrm{n} \times \mathrm{p}$) for p number of actuators to be arranged on the structure. In the present model, represented by equation (1) the number of nodes is equal to 112 (i.e. $n=112$), corresponding to the number of nodal (grid) points in the FEM output.

To decrease the dimensionality of the model a modal transformation is
carried out defining

$$
\begin{equation*}
z=\phi q \tag{3}
\end{equation*}
$$

where
ϕ is the matrix containing the eigenvectors of equation (1) and is of order ($6 n \times m$), for m number of modes and q is a modal vector of order (mxl). In this case, we are considering the first thirteen modes which include all six rigid modes and the first seven flexible modes, so that $m=13$.

After using the transformation between the modal co-ordinates given by equation (3) in equation (1), equation (1) can then be rewritten as

$$
\begin{equation*}
\phi \mathrm{T}_{\mathrm{M} \phi \overline{\mathrm{q}}}+\phi \mathrm{T}_{\mathrm{K} \phi q}=\phi_{\mathrm{C}} \mathrm{~F}_{\mathrm{c}} \tag{4}
\end{equation*}
$$

The left hand side of equation (4) can be rewritten, using the properties of the eigenvalues and associated eigenvectors as

$$
\begin{equation*}
\left[m_{i}\right] \ddot{q}+\left[K_{i}\right] q=\phi^{T} F_{c} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.\phi^{T} M \phi=\operatorname{diag}\left[m_{i}\right]=\left[m_{i}\right]\right] \\
& \phi^{T} K \phi=\operatorname{diag}\left[K_{i}\right]=\left[K_{i}\right]
\end{aligned}
$$

The control influence matrix, B_{c}, in equation (2) is formed as follows:
If there is an actuator that influences the $1^{\text {th }}$ node ($1 \leqq i \leqq 112$) in the $j^{\text {th }}$
direction $(1 \leqq j \leqq 6)$, then $B_{c}(k, L)=1$ where $k=(i-1) \times 6+j$ and $L=$ the designated number of the actuator. Thus, B_{c}, consists of zeros and ones, showing the influence of force actuators on the translational degrees of freedom of the various podes, and the influence of the torque actuators on the rotational degrees of freedom.

Equation (5) can be rewritten in the form

$$
\left[\begin{array}{c}
\dot{q}_{1} \tag{6}\\
\vdots \\
\dot{q}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & & I \\
\cdots & & \\
-\left[m_{i}\right]\left[k_{i}\right] & 0
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
\\
q_{2}
\end{array}\right]+\left[\begin{array}{lll}
0 & \\
\hdashline & -1 & T \\
{\left[m_{i}\right]} & \phi B_{c}
\end{array}\right]
$$

where the state variables, q_{1} and q_{2} are denoted,

$$
\begin{aligned}
& q_{1}=q \\
& q_{2}=\dot{q}_{1}
\end{aligned}
$$

Equation (6) is rewritten in the form:

$$
\begin{equation*}
\dot{\mathrm{X}}=\mathrm{AX}+\mathrm{BU} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& X=\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right], A=\left[\begin{array}{cc}
0 & 1 \\
-\left[m_{i}\right]\left[k_{i}\right] & 0
\end{array}\right], \\
& B=\left[\begin{array}{c}
0 \\
{\left[m_{i}\right]^{-1}{ }_{\phi} T_{B}}
\end{array}\right],
\end{aligned}
$$

Now considering the stochastic problem, the plant noise is included in equation (7) to yield the stochastic linear dynamic system

$$
\begin{equation*}
\dot{X}=A X+B U+G \underline{W} . \tag{8}
\end{equation*}
$$

The measurement vector, Y, can be related to the state vector and the measurement noise according to,

$$
\begin{equation*}
Y=E X+\underline{V} \tag{9}
\end{equation*}
$$

Equations (8) and (9) together with the following cost function,

$$
\begin{equation*}
J=E\left({\left.\underset{t_{f} \rightarrow \infty}{ } 2 t_{f} \int_{t_{0}}^{t_{f}}\left(X Q X+U^{T} R U\right) d t\right)}_{T}^{T}\right. \tag{10}
\end{equation*}
$$

5
completely define the stochastic problem. After minimizing the cost function, 5
the optimal control vector U becomes,

$$
\begin{equation*}
\mathrm{U}=-\hat{\mathrm{C}} \tag{11}
\end{equation*}
$$

where

$$
-1 T
$$

$$
\begin{equation*}
C=R B K \tag{12}
\end{equation*}
$$

and
K is the steadystate solution of the matrix Riccati differential equation,

$$
\begin{equation*}
\dot{-K}=\underset{K A}{ }+A^{T} K-K B R B^{-1} T \tag{13}
\end{equation*}
$$

The estimate, \hat{X}, is obtained from

$$
\begin{equation*}
\hat{X}=\hat{A X}+B U+F(Y-\hat{X X}) \tag{14}
\end{equation*}
$$

with the filter gain, F, expressed as

$$
F=P H V^{-1}
$$

where P is the solution of the filter matrix Riccati differential equation,

$$
\begin{equation*}
\dot{P}=A P+P A^{T}-P H^{T} \nabla^{-1} H P+G W G \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
V=E(\underline{v}) \tag{17}
\end{equation*}
$$

Table 1 - Hoopi Column model eigen values

Mode No.	Frequency Hz	$\begin{gathered} \text { Generalized } \\ \operatorname{mass,m}_{i}(\text { Ib-sec /in) } \end{gathered}$	Generalized stiffness, K (lb/in) 1
1	0.0	16.44388	0.0
2	0.0	8.925020	0.0
3	0.0	7.349353	0.0
4	0.0	9.704152	0.0
5	0.0	2. 940652	0.0
6	0.0	8.418909	0.0
7	0.1188347	153.1573	85.38542
8	0.2142455	5.232954	9.482657
9	0.2709558	3.073094	8.907021
10	0.5063228	0.3046446	3.083247
11	0.7288725	1.992988	40.88663
12	0.8897594	723.5216	$\underline{22612.90}$
13	0.9192313	0.6581203	21.95405

IIC. Possible Arrangement of Actuators for the Hoop/Column System Twelve actuators consisting of combinations of point actuators and a torquer are assumed to be located at positions along the mast and at selected positions in the feed assembly. The remaining actuator is assumed to be a point actuator mounted on one of the rigid links of the hoop assembly and whose thrust direction is tangential to the hoop circle. Fig. 2 describes the proposed actua-:-tor assembly. Actuators numbers 5 and 6 are assumed to provide control over translation along the X and Y directions, respectively, and, in addition, also
and

$$
W=E\left(\begin{array}{c}
T \tag{18}\\
(\underline{w})
\end{array}\right.
$$

Substitution of equation (11) into equation (8) will yield

$$
\begin{equation*}
\bar{X}=A \bar{X}-B C \hat{X}+G \underline{w} \tag{19}
\end{equation*}
$$

Furthermore after including equations (9) and (11) in equation (14) the folloi1ng. first order differential equation in the estimated state vector results:

$$
\begin{equation*}
\dot{\hat{X}}=(A-F H-B C) \hat{X}+F H \dot{X}+F \underline{V} \tag{20}
\end{equation*}
$$

The simulation of the stochastic optimally controlled system here will involve the simultaneous numerical solution of the sets of differential equa: tions in both the state variables and the estimated state variables, represented by equations (19) and (20). A flow diagram schematic of this configuration is illustrated in Fig. 3, and will be taken as the basis for studying the system behavior. This approach has been selected as being computationally simpler than considering, alternatively, simultaneous differential equations in the state vector together with differential equations in the error vector, $e=X-\hat{X}$. If the latter approach were taken, then at each time step a subtraction of apPropriate components of \hat{X} from the corresponding components of X would be required.

IIB. Mass and Stiffness Properties of the Hoop/Column System
The model considered here consists of six rigid body modes (3 translation+ 3 rotation) and the first seven flexible modes. Table 1 indicates the generalized mass, the generalized stiffness, and the frequency at each mode.

Fig. 3 STOCHASTIC OPTIMAL CONTROL CONFIGURATION.
to control the first bending modes (modes 8 and 9). Actuator 11 controls translation along the Z direction, whereas actuators 8,12 , and 13 control yaw, pitch and roll motions respectively. Actuators $1,2,3$, and 4 are selected so that each actuator could provide independent control of the feed mast torsion (mode 12). Actuators 9 and 10 are selected to control the second mast bending (modes 11 and 13). Actuator 7 controls surface torsion (mode 10) and is the only actuator assumed to be mounted on the hoop. Table 2 indicates the various modes affected by each actuator.

Table 2 - Relationship between actuators and modes directly influenced Actuator No, (circled in Fig. 2) Mode being affected 1,2,3 and 4 Feed Mast Torsion (12)

5

6

7
8. (Torquer)

9

10

II
12
13

First Bending (about Y axis) (8)
First Bending (about X axis) (9)
Surface Torsion (10)
Yaw (rotation about Z axis) and First Torsion (7)

Translation along X axis and Second Mast Bending (11)

Translation along Y axis and Second Mast Bending (13)

Translation along 2 axis
Pitch (rotation about Y axis)
Roll (rotation about X axis)

III Numerical Simulations and Synthesis of Control Law
Numerical calculation of the control gains and filter gains and the
simulation of the dynamic transient responses are obtained with the aid of ORACLS. ${ }^{7}$ For the proposed 13 actuator model a parametric study was performed showing the effect of varying Q from 1001 to 10000 I and R from I to $100 I$ on the least damped mode of the system (Fig. 4). It has been concluded that $Q=1000 I, R=I$ is a suitable design point from the stand point of minimizing the least damped modal time constant and maintaining a reasonable control effort. ${ }^{3}$ As mentioned earlier, controllability of the proposed system of 13 actuators (Fig. 2) has been verified. ${ }^{3}$ Further, it has been established that closed loop eigenvalues of the combined plant and estimator exist for all combinations of Q, R, W and V considered here. As an example, Table 3 shows the closed loop eigenvalues of the combined plant and estimator system for $Q=1000 I, R=I$ and $Q=10000 I, R=I$ with $W=0.00001, V=0.0000025$ assumed in both cases. The values of the plant noise are in general of the order of $1.0 \times 10^{-5}(\mathrm{dn}-\mathrm{cm})^{2}$. The values of the sensor noise varies with the type of sensor measurement device. For example, some of the angular and linear displacement sensors have noise characteristics of the order of $1.0 \times 10^{-7}(\mathrm{rad})^{2}$ and $1.0 \times 10^{-7}(\mathrm{~m})^{2}$, respectively. Since in our problem more than one type of displacement and/or rate may be required to be sensed, some average values of these plant and measurement noises have been assumed.

Figs ($5 \mathrm{a}-5 \mathrm{~g}$) show the transient behavior of the modal coordinates with random noise generated for an initial displacement of 0.01 in all modes. (Figs (6a-6c) indicate the transient behavior of the estimated modal displacement coordinates which have an initial assumed displace- $\quad \therefore$ ment of 0.01 . Figs ($5 a-5 \mathrm{~g}$) and Fig ($6 \mathrm{a}-6 \mathrm{c}$) along with Table 4 show that for the same order of control effort,

Fig. 4 Variation of the time constant of the least damped mode with
Q and r penalty matrices

Table 3

Table showing the eigenvalues of the closedloop stochastic system with observation for different state weighting matrices

13 Actuators/ 13 Modes $W=0.00001, \nabla=0.0000025$

$$
\mathrm{Q}=1000 \mathrm{I}, \mathrm{R}=\mathrm{I}
$$

$\mathrm{Q}=10000 \mathrm{I}, \mathrm{R}=\mathrm{I}$
(Real) $1 / s e c$ (Imaginary) (Real)I/sec jw(Imaginary)

-0.4179	0.4544	-0.5012	0.5193
-0.4179	-0.4544	-0.5012	-0.5193
-1.0058	0.0	-1.0006	0.0
-1.0118	0.0	-1.0011	0.0
-1.0142	0.0	-1.0023	0.0
-1.0248	0.0	-1.0024	0.0
-1.0260	0.0	-1.0082	0.0
-0.7046	0.7785	-1.0086	0.0
-0.7046	-0.7785	-1.0125	0.0
-1.0543	0.0	-1.0142	0.0
-0.6137	0.8688	-1.0544	0.0
-0.6137	-0.8688	-0.6137	0.8688
-0.9666	0.4922	-0.6137	-0.8688
-0.9666	-0.4922	-0.9666	0.4922

(Real) 1/sec	jw(Imaginary)	(Real) 1/sec	jw(Imaginary)
-1.0868	0.0	-0.9666	-0.4922
-1.0902	0.0	-1.0902	0.0
-1.0947	0.0	-1.0947	0.0
-1.0987	0.0	-1.1976	0.0
-1.1360	0.4403	-1.1360	0.4403
-1.1360	-0.4403	-1.1360	-0.4403
-1.2914	0.0	-1.3041	0.0
-1.1849	0.6481	-1.3257	0.0
-1.1849	-0.6481	-1.1849	0.6481
-1.5807	0.0	-1.1849	-0.648.1
-1.0950	1.4745	-1.0950	1.4745
-1.0950	-1.4745	-1.0950	-1.4745
-2.5134	0.0	-2.5134	0.0
-2.5688	0.0	-2.5688	0.0
-2.1916	1.6704	-2.6843	0.0
-2.1916	-1.6704	-1. 1000	2.6437
-1.0244	2.7961	-1. 1000	-2.6437
-1.0244	-2.7961	-3. 2607	0.0
-3. 2607	0.0	-0.0575	3.3319
-0.0575	3.3319	-0.0575	-3.3319
-0.0575	-3.3319	-0.5617	4.4959
-3.9913	0.0	$\therefore \quad-0.5617$	-4.4959
-3.6151	1.7994	-0.9201	5.4912
-3.6151	-1.7994	-0.9201	-5.49.12

$$
Q=1000 I, R=I
$$

(Real) $1 / \mathrm{sec}$	jw(Imaginary)	(Real) $1 / \mathrm{sec}$	jw(Imaginary)
-0.5617	4.4959	-0.0091	5.5905
-0.5617	-4.4959	-0.0091	-5.5905
-5.4764	0.0	-0.5935	5.7365
-0.9201	5.4911	-0.5935	-5.7365
-0.9201	-5.4911	-6.3792	0.0
-0.0078	5.5905	-8.7613	0.0
-0.0078	-5.5905	-9.2251	0.0
-0.5935	5.7365	-12.6541	0.0
-0.5935	-5.7365	-13.1993	0.0
-6.2697	0.0	-19.0026	0.0
-9.2251	0.0	-27.1591	0.0
-10.0084	0.0	-32.9847	0.0
-12.4055	0.0	-40.2118	0.0
-30.1863	0.0	-98.5507	0.0

Pig. 5a Transtent Response for 100 secs - Lloop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - Actual State with Noise

Fig. 5b Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - Actual State with Noise

Fig. 5e Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - Actual State with Noise

Fig. 5 g Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - Actual State with Noise

Fig. 6d Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate with

.080
.004
.046
.032
4
.016
0.000
-.418
-.035
.010
-.064
-.080
0.0
F1g. 6g Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate with
Nominal Weights on State and Control

Table 4

Comparison of maximum actuator force amplitudes

$$
Q=1000 I, R=I, q_{i}(0)=0.01, i=1,2 \ldots, 13 \text {. } 13 \text { Actuators/ } 13 \text { Modes }
$$

f_{1}	0.3500	0.3330
f_{2}	0.0569	0.0570
f_{3}	0.3030	0. 2681
f_{4}	0.0569	0.0570
f_{5}	1.3000	1.3028
f_{6}	0. 2830	0. 2865
f_{7}	1. 2700	1. 2310
$\mathrm{f}_{8}(\mathrm{in}-1 \mathrm{~b})$	0.0 .124	0.0140
f_{9}	0.2360	0. 2859
f_{10}	0.1570	0.1574
f_{11}	0.4060	0.4086
f_{12}	0.3520	0.3521
f_{13}	0.0688	0.0660

the estimate of the state closely follows the actual system dynamics thus ensuring a satisfactory estimation process. The assumed initial displacements of 0.01 in the modal coordinates correspond to the expected maximum perturbations in the linear range from the nominal operating required RMS displacements, obtained through calculation of equation (3).

Figs. (6a-6c) and Figs. (7a-7c) together with Table 5 show that increasing the elements of the state weighting matrix increases the control effort required by an order of magnitude, but does not cause a significant improvement in the transient response. [But, it was found in the deterministic case that increasing the elements of the state weighting matrices causesa significant improvement in the transient response (Ref. 3).] Other results (not shown) in which only some of the state weighting elements are inceased, also indicate that this technique of increasing the elements of the state weighting matrix will not result in a marked improvement.

A separate study was conducted to determine the effect of varying the plant and sensor noise characteristics for a fixed set of penalty matrices. In Fig. 8 the measurement noise co-variance has been increased to 0.00025 , while the plant noise has been reduced to 0.0000001 (both changes involve two orders of magnitude), as compared with Figs. (6a-6c). For comparison purposes only a few of the modes are depicted in Fig. 8. It can be seen that a great improvement in transient performance is realized, with the same order of control effort (Table 6). Increasing the elements of the control weighting matrix along with the sensor noise for the same weighting matrix is also found to bring about a significant improvement in the transient response as could be seen from a comparison of Figs. (6a-6c) with Fig. 9.

Fig. 7a Transient Response for 100 secs - Hoop / Column Antenna System Increased Penalty on the State

Fig: 7b Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate with
Increased Penalty on the State

Fig. 7g Transient Response for 100 secs - Hoop / Column Antenna System

Table 5

Comparison of maximum actuator force amplitudes

$$
\mathrm{q}_{\mathrm{i}}(0)=0.01, \quad i=1,2 \ldots, 13.13 \text { Actuators/ } 13 \text { Modes }
$$

Maximum actuator force amplitudes(pounds)	Stochastic case$W=0.00001 \quad V=0.0000025$	
	$Q=1000 \mathrm{I}$	$Q=10000 \mathrm{I}$
	$\mathrm{R}=\mathrm{I}$	$\mathrm{R}=\mathrm{I}$
	Fig. 6	Fig. 7
f_{1}	0.3330	1.5759
f_{2}	0.0570	0.1915
f_{3}	0.2681	1.4151
f_{4}	0.0570	0.1915
f_{5}	1.3028	3.6022
f_{6}	0.2865	0.8400
f_{7}	1. 2310	3.0046
$\mathrm{f}_{8}(\mathrm{in}-1 \mathrm{~b})$	0.0140	0.1184
f^{\prime}	0.2859	0.8483
f_{10}	0.1574	0.6483
f_{11}	0.4086	1.3481
f_{12}	0.3521	0.9442
f_{13}	0.0660	0.2342

Fig. 8a Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate, Effect of
Changing Noise Parameters

Fig. 8b Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate, Effect of Changing Noise Parameters

Fig. 8c Transient Response for 100 secs - Hoop / Column Antenna System 13 Actuators / 13 Sensors / 13 Modes - State Estimate, Effect of
Changing Noise Parameters

Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate, Effect of
Changing Noise Paraneters

Transient Response for 100 secs - Hoop / Column Antenna System
13 Actuators / 13 Sensors / 13 Modes - State Estimate, Effect of
Changing Noise Paraneters

Fig. 8g Transient Response for 100 secs - Hoop / Column Antenna System 13 Actuators / 13 Sensors / 13 Modes - State Estimate, Effect of
Changing Noise Parameters

Table 6

Comparison of maximum actuator force amplitudes

$$
Q=1000 I, R=I, \quad q_{i}(0)=0.01, i=1,2 \ldots, 13.13 \text { Actuators } / 13 \text { Modes }
$$

Maximum actuator force	Stoch	ase
amplitudes (pounds)	$W=0.00001$	$W=0.0000001$
	$\nabla=0.0000025$	$v=0.00025$
	Fig. 6	Fig. 8
f_{1}	0.3330	0.3490
f_{2}	0.0570	0.0570
f_{3}	0.2681	0.3010
f_{4}	0.0570	0.0569
f_{5}	1.3028	1.3028
f_{6}	0.2865	0.2865
£ 7	1. 2310	1. 2310
$\mathrm{f}_{8}(\mathrm{in}-1 \mathrm{~b})$	0.0140	0.0127
f_{9}	0.2859	0.2606
f_{10}	0.1574	0.1574
E_{11}	0.4086	0.4086
f_{12}	0.3521	0.3521
f 13	0.0660	0.0870

TRANSIENT RESPONSE FOR 100.SECS - HOOP/COLUMN
13 ACTUATORS - 13 MODES
STOCHASTIC CASE

6.52

IV. Concluding Comments

For all cases considered here the estimate of the state closely correlates with the actual (RMS) system dynamics. Some improvement in the transient performance may be achieve by increasing the sensor noise because the filter gain depends upon the inverse of the sensor noise covariance. As the sensor noise covariance is increased, the filter gain decreases and the matrix ($A-F H-B C$) increases causing a faster decay of the transients. However, one cannot increase the sensor noise covariance indefinitely since large values of sensor noise may affect the performance of the sensor itself, and thus, the estimation process. Plant noise can be reduced by incorporating appropriate filtering devices and this may also result in improved transient performance; here a definite trade-off exists between the increased complexity, cost, weight and reliability of the filter, and the possible gain in system performance. Further studies in this area are recommended.

When there is no or only limited flexiblity in altering the stochastic properties of the plant and the sensors; then one should consider the possible relocation of the actuators and /or sensors. It is suggested that this could form the basis for further research on this problem.

References

1) Sullivan, M.E., 'Maypole (Hoop/Column) Concept Development Program, "Large Space Systems. Technology - 1981, Third Annual Technical Review, NASA Langley Research Center, Nov. $16-19,1981$, NASA Conference Publication 2215, Part 2, pp. 503 - 5550.
2) Reddy, A.S.S.R. and Bainum, P.M., "Controllability of Inherently Damped Large Flexible Space Structure," $33^{\text {rd }}$ International Astronautical Congress,

Paris, Sept. 27 - Oct. 2, 1982, Paper No: IAF 82 - 319; also, Acta Astronautica, Vo1. 10, No. 5-6, pp. 357 - 363, 1983.
3) Bainum, P.M. and Reddy, A.S.S.R.,"On the Controllability and Control Law Design for an Large Flexibile Antenna System", $34^{\text {th }}$ International Astronautical Congress, Budapest, Hungary, Paper No. 83 - 340 (Oct. $10-15,1983$).
4) Joshi, S.M.,"Control Systems Synthesis for a Large Flexible Space Antenna", XXXIII Id Congress of the International Astronautical Federation, Paris, France, Paper No. 82 - 320 (Sept. 26 - Oct. 2; 1982).
5) Gelb, A.E.,(Editor) Applied Optimal Estimation, The M.I.T. Press,Massachusetts Institute of Technology, Cambridge, Massachusetts, 1974. (pp. 356 365).
6) Bryson, A.E. and Ho, Y.C., Applied Optimal Control, Blaisdell Publishing Co., Waltham, Massachusetts, 1969. (pp 414-418).
7) Armstrong, E.S., ORACLS - A Design System for Linear Multivariable Control (Volume 10), Marcel Dekker Inc., New York, 1980.
8) DeLorenzo, M.L., "Selection of Noisy Sensors and Actuators for Regulation of Linear Systems", Purdue University, School of Aeronautics and Astronautics, West Lafayette, Indiana 47907. Technical Report prepared under grant AFOSR 820209 for The Air Force Office of Scientific Research .

VII. CONCLUSIONS AND RECOMMENDATIONS

The two dimensional model of the SCOLE configuration developed here will be extended to the three dimensional situation and control synthesis initiated for both linear systems analysis as well as for slewing maneuvers outside of the linear range. The ultimate goal of such an analysis will be to support the actual design of a scale model laboratory experiment to be prepared by the Flight Dynamics and Control Division at NASA Langley.

At this stage of our preliminary review of the stability of large ordered space structure systems with input delays, it is not completely conclusive that such large ordered systems under general oscillatory motions could be stabilized by a time delayed feedback. Further work in this area is anticipated together with a sample numerical example computation and is proposed for the next grant year.

It is found that for extremely flexible large orbiting platforms, especially those nominally oriented in the local horizontal plane, that appreciable amplitudes in the rigid modes may be induced by solar radiation pressure even in the presence of (active and/or passive) control. When this situation is suspected, linear quadratic regulator techniques offer a versatile means of redesigning control laws prevously synthesized without compensating for environmental disturbances.

In general, thermal deformations of simple beam and platform type structures in orbit may be of greater concern than the deformations due to structural vibrations when modelling the disturbances arising from solar radiation pressure.

Within cost and weight constraints materials should be selected and designed so as to minimize the expected thermal deformations.

Our analysis of the stochastic optimal control of the proposed Hoop/Column antenna system indicates that increasing the appropriate elements in the state weighting matrix may not bring as noticeable improvement in the transient performance as it did for the deterministic case. A definitive improvement in both transient and steady state (RMS) performance can be realized by decreasing the plant noise and (1) suitably increasing the measurement noise or by (2) selectively increasing the measurement noise and also selected elements in the control weighting matrix.

