1,256 research outputs found

    Modeling of short scale turbulence in the solar wind

    Get PDF
    The solar wind serves as a laboratory for investigating magnetohydrodynamic turbulence under conditions irreproducible on the terra firma. Here we show that the frame work of Hall magnetohydrodynamics (HMHD), which can support three quadratic invariants and allows nonlinear states to depart fundamentally from the Alfv&#233;nic, is capable of reproducing in the inertial range the three branches of the observed solar wind magnetic fluctuation spectrum - the Kolmogorov branch <i>f</i><sup> -5/3</sup> steepening to <i>f</i><sup> -&alpha;<sub>1</sub></sup> with <!-- MATH alpha1simeq3−4alpha_1{simeq}3{-}4 --> <IMG WIDTH='61' HEIGHT='29' ALIGN='MIDDLE' BORDER='0' src='http://www.nonlin-processes-geophys.net/12/75/2005/npg-12-75-img3.gif' ALT='alpha1simeq3−4alpha_1{simeq}3{-}4'> on the high frequency side and flattening to <i>f</i><sup> -1</sup> on the low frequency side. These fluctuations are found to be associated with the nonlinear Hall-MHD Shear Alfv&#233;n waves. The spectrum of the concomitant whistler type fluctuations is very different from the observed one. Perhaps the relatively stronger damping of the whistler fluctuations may cause their unobservability. The issue of equipartition of energy through the so called Alfv&#233;n ratio acquires a new status through its dependence, now, on the spatial scale

    Microflares in accretion disks

    Get PDF
    We have investigated the phenomenon of explosive chromospheric evaporation from an accretion disk as a mechanism for fast variability in accreting sources such as low mass X-ray binaries and active galactic nuclei. This has been done in the context of advection dominated accretion flows, allowing both high and low states to be considered. This mechanism can in principle produce sub-millisecond timescales in binaries and sub-minute timescales in active galaxies. However, even considering the possibility that large numbers of these microflares may be present simultaneously, the power emitted from these microflares probably amounts to only a small fraction of the total X-ray luminosity.Comment: 5 pages, 1 figure, uses older A&A class file; accepted for publication in A&

    Ceramic Matrix Composites (CMCs) at GE: From inception to commercialization

    Get PDF
    Please click Additional Files below to see the full abstract

    Low-flow estimates for Cedar Creek at Galesburg, Illinois

    Get PDF
    "September 1995.""Prepared for the Galesburg Sanitary District, Galesburg, Illinois.

    Evaporation of alpha particles from 31^31P nucleus

    Full text link
    The energy spectra of alpha particles have been measured in coincidence with the evaporation residues for the decay of the compound nucleus 31^31P produced in the reaction 19^19F (96 MeV) + 12^12C. The data have been compared with the predictions of the statistical model code CASCADE. It has been observed that significant deformation effect in the compound nucleus need to be considered in order to explain the shape of the evaporated alpha particle energy spectra.Comment: 4 pages, 3 figures, revtex, epsf styl

    Reversible plasticity in amorphous materials

    Get PDF
    A fundamental assumption in our understanding of material rheology is that when microscopic deformations are reversible, the material responds elastically to external loads. Plasticity, i.e. dissipative and irreversible macroscopic changes in a material, is assumed to be the consequence of irreversible microscopic events. Here we show direct evidence for reversible plastic events at the microscopic scale in both experiments and simulations of two-dimensional foam. In the simulations, we demonstrate a link between reversible plastic rearrangement events and pathways in the potential energy landscape of the system. These findings represent a fundamental change in our understanding of materials--microscopic reversibility does not necessarily imply elasticity.Comment: Revised pape
    • …
    corecore