641 research outputs found

    The phonon dispersion of graphite by inelastic x-ray scattering

    Full text link
    We present the full in-plane phonon dispersion of graphite obtained from inelastic x-ray scattering, including the optical and acoustic branches, as well as the mid-frequency range between the KK and MM points in the Brillouin zone, where experimental data have been unavailable so far. The existence of a Kohn anomaly at the KK point is further supported. We fit a fifth-nearest neighbour force-constants model to the experimental data, making improved force-constants calculations of the phonon dispersion in both graphite and carbon nanotubes available.Comment: 7 pages; submitted to Phys. Rev.

    Understanding the complex phase diagram of uranium: the role of electron-phonon coupling

    Full text link
    We report an experimental determination of the dispersion of the soft phonon mode along [1,0,0] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent theory. New calculations demonstrate the strong pressure (and momentum) dependence of the electron-phonon coupling, whereas the Fermi-surface nesting is surprisingly independent of pressure. This allows a full understanding of the complex phase diagram of uranium, and the interplay between the charge-density wave and superconductivity

    Phonon surface mapping of graphite: disentangling quasi--degenerate phonon dispersions

    Get PDF
    The two-dimensional mapping of the phonon dispersions around the KK point of graphite by inelastic x-ray scattering is provided. The present work resolves the longstanding issue related to the correct assignment of transverse and longitudinal phonon branches at KK. We observe an almost degeneracy of the three TO, LA and LO derived phonon branches and a strong phonon trigonal warping. Correlation effects renormalize the Kohn anomaly of the TO mode, which exhibits a trigonal warping effect opposite to that of the electronic band structure. We determined the electron--phonon coupling constant to be 166(eV/A˚)2\rm(eV/\AA)^2 in excellent agreement to GWGW calculations. These results are fundamental for understanding angle-resolved photoemission, double--resonance Raman and transport measurements of graphene based systems

    Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1.6La0.4Cu2O6 superconductors

    Get PDF
    We report the first measurement of the optical phonon dispersion in optimally doped single layer Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a strong softening of the Cu-O bond stretching phonon at about q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A direct comparison with angle-resolved photoemission spectroscopy measurements taken on the same sample, revealed an excellent agreement in terms of energy and momentum between the ARPES nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63 meV kink is observed can be connected with a vector q=(xi,0,0) with xi~0.22, which corresponds exactly to the soft part of the bond stretching phonon mode. This result supports an interpretation of the ARPES kink in terms of electron-phonon coupling.Comment: submited to PR

    Velocity and Heat Flow in a Composite Two Fluid System

    Full text link
    We describe the stress energy of a fluid with two unequal stresses and heat flow in terms of two perfect fluid components. The description is in terms of the fluid velocity overlap of the components, and makes no assumptions about the equations of state of the perfect fluids. The description is applied to the metrics of a conformally flat system and a black string.Comment: typos correcte

    Collapsing Layers on Schwarzschild-Lemaitre Geodesics

    Full text link
    We discuss Israel layers collapsing inward from rest at infinity along Schwarzschild-Lemaitre geodesics. The dynamics of the collapsing layer and its equation of state are developed. There is a general equation of state which is approximately polytropic in the limit of very low pressure. The equation of state establishes a new limit on the stress-density ratio.Comment: To appear in Phys. Rev. D 1

    MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility

    Get PDF
    Preclinical experiments are carried out with ~20–30 μm wide, ~10 mm high parallel microbeams of hard, broad-‘‘white’’-spectrum x rays (~50–600 keV) to investigate microbeam radiation therapy (MRT) of brain tumors in infants for whom other kinds of radiotherapy are inadequate and/or unsafe. Novel physical microdosimetry (implemented with MOSFET chips in the ‘‘edge-on’’ mode) and Monte Carlo computer-simulated dosimetry are described here for selected points in the peak and valley regions of a microbeam-irradiated tissue-equivalent phantom. Such microbeam irradiation causes minimal damage to normal tissues, possible because of rapid repair of their microscopic lesions. Radiation damage from an array of parallel microbeams tends to correlate with the range of peak-valley dose ratios (PVDR). This paper summarizes comparisons of our dosimetric MOSFET measurements with Monte Carlo calculations. Peak doses at depths \u3c22 mm are 18% less than Monte Carlo values, whereas those depths \u3e22 mm and valley doses at all depths investigated (2 mm–62 mm) are within 2–13% of the Monte Carlo values. These results lend credence to the use of MOSFET detector systems in edge-on mode for microplanar irradiation dosimetry

    Phonon dispersion and lifetimes in MgB2

    Get PDF
    We measure phonon dispersion and linewidth in a single crystal of MgB_2 along the Gamma-A, Gamma-M and A-L directions using inelastic X-Ray scattering. We use Density Functional Theory to compute the effect of both electron-phonon coupling and anharmonicity on the linewidth, obtaining excellent agreement with experiment. Anomalous broadening of the E_2g phonon mode is found all along Gamma-A. The dominant contribution to the linewidth is always the electron-phonon coupling.Comment: 4 pages, 3 figure

    On asymmetry in inclusive pion production

    Full text link
    On the basis of the mechanism proposed for one-spin asymmetries in inclusive hadron production we specify an xx--dependence of asymmetries in inclusive processes of pion production. The main role in generation of this asymmetry belongs to the orbital angular momentum ofquark-antiquark cloud in internal structure of constituent quarks. The xx--dependence of asymmetries in the charged pion production at large xx reflects the corresponding dependence of constituent quark polarization in the polarized proton.Comment: LaTeX, 8 pages, 3 figures. One figure added, as it appears in Phys. Rev.
    corecore