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Preclinical experiments are carried out with;20–30mm wide,;10 mm high parallel microbeams
of hard, broad-‘‘white’’-spectrum x rays~;50–600 keV! to investigate microbeam radiation
therapy~MRT! of brain tumors in infants for whom other kinds of radiotherapy are inadequate
and/or unsafe. Novel physical microdosimetry~implemented with MOSFET chips in the ‘‘edge-on’’
mode! and Monte Carlo computer-simulated dosimetry are described here for selected points in the
peak and valley regions of a microbeam-irradiated tissue-equivalent phantom. Such microbeam
irradiation causes minimal damage to normal tissues, possible because of rapid repair of their
microscopic lesions. Radiation damage from an array of parallel microbeams tends to correlate with
the range of peak-valley dose ratios~PVDR!. This paper summarizes comparisons of our dosimetric
MOSFET measurements with Monte Carlo calculations. Peak doses at depths,22 mm are 18%
less than Monte Carlo values, whereas those depths.22 mm and valley doses at all depths
investigated~2 mm–62 mm! are within 2–13 % of the Monte Carlo values. These results lend
credence to the use of MOSFET detector systems in edge-on mode for microplanar irradiation
dosimetry. © 2003 American Association of Physicists in Medicine.@DOI: 10.1118/1.1562169#

Key words: microdosimetry, microbeam radiation therapy, edge-on MOSFET, synchrotron
radiation

I. INTRODUCTION

During the past decade, potential applications of microbeam
radiation therapy~MRT! have been studied experimentally at
the National Synchrotron Light Source~NSLS! at Upton,
New York, USA1–3 and at the European Synchrotron Radia-
tion Facility ~ESRF! in Grenoble, France.4–7 For these MRT
trials a synchrotron source with extremely high dose rate is
needed to irradiate tissues with, for example, 300 Gy, in a
fraction of a second, which assures minimal broadening of
the microslices of intensely irradiated tissues attributable to
movement of the specimen. The preclinical MRT program
comprises irradiation of normal brain tissues in weanling
piglets ~,7 kg! and suckling rats at the ESRF followed by
long-term~9–15 months! neurobehavioral observation, non-
invasive imaging and histopathological study. Results 4, 6, 7
show that tissue tolerance to multiple microbeams is surpris-
ingly high, especially for these young animals. MRT might
palliate or even ablate malignant brain tumors if there were
sufficient sparing of normal tissue radiation damage in the
‘‘valleys’’ between individual microbeams. When such spar-
ing is observed experimentally, knowing the maximum val-

ley doses in normal, radiosensitive tissues of the target zones
is of crucial importance in predicting what doses and micro-
beam array geometries are safe and therapeutically useful in
clinical research.

The aim of this study was to relate physical peak-to-
valley dose ratios with Monte Carlo dose simulations for the
geometry used in the experiments. The theoretical calcula-
tions, the experimental measurements and the comparison of
the data obtained by both methods were all done for a 1 liter
cubic PMMA phantom. This phantom has physical properties
similar to those of an infant’s hindbrain and the hindbrain of
the weanling~;7 kg! piglet, one of our animal models of
normal tissue tolerance for this prospective application of
MRT.7

II. THEORY

Most of the theoretical calculations using Monte Carlo
codes8,9 have predicted the dose distribution around one
single microbeam in the radial direction for very small voxel
sizes like 1mm cube. These calculations must be performed
for distances from the microbeam peak extending perpen-
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dicular about 25 millimeters outwards, since the actual valley
dose is calculated by overlapping the tails of the micro-
beams.

The energy deposition within a 1mm cube can be calcu-
lated using sophisticated Monte Carlo programs for the peak
and the valley area of the microbeams interacting with a
water or plastic phantom. There are several reports on Monte
Carlo based computational MRT microdosimetry8,9 that
quantify the dependence of doses in the peaks and valleys in
an H2O filled phantom on parameters that include beam pho-
ton energy spectrum, size and number of microbeams, di-
mensions of the phantom, microbeam spacing, position of
microbeams, and depth of the point of interest from the
phantom surface. Our MOSFET results are compared with
computations using the PSI version of the GEANT Monte
Carlo photon–electron transport code,10 into which the pho-
ton and electron cross section and atomic data compiled at
Lawrence Livermore National Laboratory in the 1990s have
been incorporated~the Evaluated Photon Data Library,
EPDL,11,12the Evaluated Electron Data Library EEDL,13 and
the Evaluated Atomic Data Library EADL14!. The code uses
the currently most advanced atomic databases as well as
‘‘single-collision’’ electron transport rather than the
‘‘condensed-history’’ electron transport used in other codes,
such as EGS4.0.15 The former is an especially important tool
for a proper electron tracking in micrometer-sized targets.

The initial filtered photon spectrum and intensity of the
wiggler beam can be calculated accurately with various pro-
grams, such as XOP.16–18Figure 1 is the photon spectrum at
the wiggler beamline ID17 of the ESRF, measured with a
powder diffraction method.19 This spectrum is read in as in-
put file for the Monte Carlo calculations in the PSI version of
the GEANT code. The simulation includes the correct num-
ber of microplanar beams assuming all of them to be 25mm
thick, which corresponds only to the mean value of our ac-
tual microbeams. This inadequate modeling will be corrected
in future studies, since the entry of the correct FWHM of
each individual microbeam requires a lot of effort and the
associated error is insignificant. The dose deposition in the
PMMA phantom has been calculated for its correct chemical
composition and dimensions as well as the exact points in
depth, but without taking into account the Si MOSFET chip,
which has been estimated to introduce errors up to 10%. We
are currently working on improvement for future studies.

For the MRT irradiation the white synchrotron wiggler
spectrum is filtered which results in a spectrum extending
from about 50 to well above 350 keV with a maximum at 83
keV. The total number of photons after the filters is roughly
2.73109 photons s21 mm22 mA21 in the center of the wig-
gler radiation cone, which, according to our Monte Carlo
computation, imparts an absorbed dose rate at 3 mm depth in
PMMA of 71.5 Gy s21 mA21. Also according to our calcu-
lations, the radiolucent aluminum spacers between the radio-
opaque gold columns of our microslit collimator cut the dose
within the microbeam down to a peak skin entrance dose rate
of 27 Gy s21 mA21. The desired irradiation dose is obtained
by selecting the speed of the vertically translated target
through the beam.

III. EXPERIMENTAL SETUP

The Synchrotron Radiation x-ray beam is produced by
bunches of 6 GeV electrons circulating in an 844 meter-
circumference evacuated ring with an orbit time of 2.82 mi-
croseconds. The maximum resultant ring current of 200 mA
has a typical decay time of 50 hours. For the dose measure-
ments described below, only one bunch of electrons is used
to minimize the dose rate to the detector. The ring current is
a linear dose-scaling factor in MRT experiments. For our
measurements, the maximum current was 20 mA with a typi-
cal lifetime of 6 hours. The beam in the first hutch of the
ID17 beamline is spatially fractionated into microbeams at a
distance of 33 m from the wiggler source. A set of tungsten
slits of various sizes can be installed on a 3-axis stage behind
the collimator, either to block scattered radiation~vertical
height of the slits5500 mm! or to select one of the many
available ;20–30 mm wide microbeams. To measure the
peak valley dose ratios~PVDR! at the sample position, the
MOSFET detector was installed on the sample stage~3-axis
goniometer! 1.00 m downstream from the collimator. An ion-
ization chamber at the downstream end of the hutch was
used for alignment.

The specimen is fixed to a computer-controlled stage that
permits high-resolution rotation and translation of the target
area with respect to the beam. The irradiation is performed
by vertically scanning the target through the beam, so that
preselection of the speed of vertical translation of the target
allows one to irradiate the selected tissue area with precisely
the desired dose. A fast shutter system20 synchronized with
the speed of vertical translation permits one to specify the
time that each element of tissue in a microslice is exposed to
the beam. An acceleration and deceleration path outside the
beam is calculated and automatically applied to ensure a per-
fectly constant movement of the target during radiation ex-
posure. A total irradiation field 10 mm wide and 10 mm high
was chosen for this study. The minimum opening time of
ID17’s fast shutter is 30 ms. Whenever a measurement of the
exact opening time is required, a radiation-shielded photodi-
ode is connected to an oscilloscope at the end of the beam
path.

There exists no commercial device to measure the dose in
the center of a several hundredmm wide ‘‘valley’’ or in the

FIG. 1. Measured photon spectrum used for MRT at the ESRF.
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midplane of a several tens ofmm wide microslice of tissue,
i.e., in the ‘‘peak.’’ We now present dose measurements of
valley and peak doses using a MOSFET-type detector oper-
ated in an ‘‘edge-on’’ mode. The current MRT program at the
ESRF medical beamline ID17 uses a filtered, ‘‘white,’’
broad-spectrum synchrotron radiation wiggler-generated
beam with a critical energy of 38.1 keV, corresponding to a
wiggler gap of 24.8 mm. Our custom-made Archer-type mul-
tislit collimator21 can produce up to 80 planar microbeams of
roughly uniform widths adjustable up to 50mm in width
with an approximately uniform peak-to-peak interval of
;210 mm. For this study the typical size of an array of
microbeams is 10 mm wide and 500mm high, which typi-
cally irradiates a surface of 1 cm2 by vertical translation of
the target through the beam. This corresponds to about 48
parallel,;25 mm wide microbeams. Narrowing the width of
the array makes a fairly homogeneous photon flux possible,
thus assuring an equivalent peak dose from each microbeam.
~See Fig. 2.!

IV. MATERIAL AND INSTRUMENTATION

The actual MOSFET detector consists of four individual
chips, which are mounted in a 12 mm thick housing~Fig. 3!.
The upper part of this encapsulation can be removed to ac-
quire measurements without the PMMA encapsulation. The
part of the support has a labyrinth design with an airtight fit;
it also ensures that the central microbeam chosen for the
measurements impinges onto an uninterrupted smooth sur-
face a few millimeters from the joint where the two plastic
pieces are screwed together. The measurements, called ‘‘free
in air’’ in Table I, used a bare chip surrounded by a 300mm
thick epoxy bulb and a small air gap of about 200mm.

Measurements described in this article were performed
using the on-line MOSFET readout system.22 The MOSFET
detector is well known as a dosimetric detector.23–25 The

particular MOSFET used in our experiments was the REM
RADFET.22 The RADFET consists of two pairs ofp-channel
MOSFETs with different gate oxide thicknesses~;0.13 and
;1 mm!. The details of the topology and layout of the RAD-
FET chip are described in Fig. 4.

V. PACKAGING OF THE MOSFET DETECTOR FOR
MICROBEAM EXPERIMENTS

Our microbeam dosimetry approach is based on a quad-
rupole x-ray detector. Figure 4 shows a scanning electron
microscope~SEM! image of the bare chip and the direction
of the x-ray beam. This is the REM type TOT502 RADFET,
a quadruple MOSFET chip with dimensions 13130.5 mm3.
Two MOSFETs, Q1 and Q4~Type R!, have gate oxide thick-
ness values of about 0.9mm and two others, Q2 and Q3
~Type K!, have thickness values of about 0.15mm. The do-
simeter sensors for this experiment were selected for preirra-
diation stability. The chip was encapsulated in opaque epoxy.
On the axis of the microbeam array, the thickness of epoxy
was less than 2 mm.

For this experiment, chip carrier CC3 was used. This is a
thin glass-epoxy carrier~‘‘chip-on-board’’ technology! with
14 pins, which will connect with a standard DIL socket; the
sensor is cantilevered so that a buildup cap can be placed
around the chip. The normal built-in encapsulation is a hemi-
sphere of opaque epoxy resin. The package was mounted in
‘‘edge-on’’ mode on a movable, computer-controlled, stage
in the experimental hall. For high-energy photons, the sensor
region was mounted inside a small block of PMMA 939312
mm3—a ‘‘buildup cap’’ which created electronic equilbrium.
The R-type RADFETs were irradiated under a15 V gate
bias and the K-type under a112 V gate bias. These irradia-

FIG. 2. Schematic view of the experimental setup.

FIG. 3. Schematic diagram of MOSFET as the beam sees the detector.

TABLE I. Calibration results in terms of voltage shift per absorbed dose.

Free in air
Behind 3 mm

of PMMA
Behind 1.2 cm

of PMMA

62.64 mV/Gy
64%

68.75 mV/Gy
64%

63.56 mV/Gy
64%

FIG. 4. Scanning electron microscopy~SEM! photograph of the REM
TOT500 RADFET chip, showing the four RADFETs Q1–Q4. The ‘‘edge-
on’’ geometry of the radiation beam for the experiments described in this
article is shown impinging on the edges of Q3 and Q4.
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tion bias values were found to give the best linearity of
threshold voltage versus dose. As the response curve rolls off
slightly with accumulated dose, linearity was checked under
different radiation pulse duration times.

For surface dose measurements, the center of the sensitive
element of the ‘‘edge-on’’ RADFET chip was located at the
center of the surface of the~10310310 cm3) PMMA phan-
tom. The specially developed reader for pulsed beam appli-
cations allowed the readout of the MOSFET detector imme-
diately after each exposure via a TTL pulse, generated by the
beam shutter control computer, to trigger the readout system.
All measurements were performed in an environment main-
tained at a temperature of 20 °C controlled to within 0.5 °C.

The data presented in this report are based on parameters
used for MRT. The calibration of the detectors was done
under identical conditions to the experimental irradiations.
The dose in front of the multislit collimator is known and
cross calibrated with other detectors, such as ionization
chambers and Gafchromic films. The two MOSFET R-type
gate oxides have a size of 2703180 mm2 and a thickness of
1 mm, while the 0.15mm thick K-type chips cover an area of
1203150 mm2. The higher sensitive R-type chips were
mainly used for alignment, since in this configuration the
x-ray flux can be reduced by opening the wiggler gap. Ab-
solute dosimetric data were taken with less sensitive K-type
chips to allow measurements at closed gap~24.8 mm!. At a
minimum dose per exposure of 8 Gy, considering the neces-
sity to do whole scans for the correct alignment, only a few
measurements were possible in the peak, since the REM
RADFET detector are saturated after about 400 Gy. They can
be replaced by the same detector type, but careful character-
ization of the new alignment takes several hours.

The chips lying in the used geometrical configuration
have proven to be extremely useful for the correct alignment
of the sensor with respect to the beam. During the alignment
phase, the shift between the peaks of the scanned profiles of
two chips on top of each other~with the observer looking
downstream in beam direction!, and those two chips in front
and in the back allow calculation of the misalignment and
their correction with pitch, yaw, and roll movements of the
goniometer.

VI. DETECTOR LINEARITY

The MOSFET detectors were used in active mode, with a
bias on the gate to reduce the nonlinearity of the dose re-
sponse for all measurements. For peak-to-valley dose mea-
surements a;0.1 mm gate oxide thickness and gate bias of
112 V yielded;60 mV/Gy and was dose rate-independent
due to the high internal electric field in the oxide under these
conditions. The maximum dose rate for these experiments
was;102 Gy s21. Dose linearity was checked regularly by
repeating measurements of the increment of the threshold
voltage shifts before and after groups of dose measurements.

VII. CALIBRATION RESULTS

In order to calibrate the MOSFET detector, we calculated
and measured the photon flux16–19 in front of the multislit

collimator giving a regular dose for a homogeneous surface
of 1 cm2. The MOSFET detector was calibrated in this ho-
mogeneous field with a known photon flux behind different
thicknesses of PMMA. Three different geometry conditions
were used within a homogeneous photon flux upstream from
the multislit collimator, identical to the ones used for our
dose measurements with calibrated Gafchromic films, i.e.,
equally done at the surface and behind 3 mm of PMMA.
These irradiations can be done independently, placing either
the MOSFETs or the Gafchromic films at exactly the same
place behind identical PMMA thicknesses on the goniom-
eter; the dose control is perfect reproducible by the software
controlled exposure time and speed of the goniometer, which
takes automatically the current of the machine into account
to deliver the desired dose. The data presented in Table I
represent the change in the response of the K-type MOSFETs
per one gray delivered at the surface of the phantom. This is
a reproducible known dose value measured by Gafchromic
film dosimeters, read out with a photo spectrometer~U-2000
UV/Vis! at the ESRF. The response of the Gafchromic films
above 50 keV is nearly energy independent, which makes it a
very adequate dosimeter for our spectrum. The films are cali-
brated with a Cobalt 60 source@MDS/Nordion type Gamma-
cell 220~ID34! of the service de Metrologie Habilite, Aerial,
Schiltigheim, France#. Calibration curves using an x-ray gen-
erator are as well obtained at an energy around 79 keV from
the CEA Institute Grenoble, France.

When we apply the obtained calibration values in front of
the multislit collimator to convert our voltage shifts into a
peak dose, we underestimate the real dose in the peaks due to
the slightly harder spectrum after the multislit collimator,
which partially explains the difference between measured
and calculated values in Fig. 6. These corrections will be the
subject of further studies. Far more important are the
PVDRs, which are barely affected by these calibration errors,
even when 1mm resolution is required. The results of these
calibrated MOSFET detectors are averaged for four different
exposures per chip and shown in Table I.

VIII. CHARACTERIZATION OF MICROBEAMS

The multislit collimator21 used at the ESRF consists of
two stacks of gold foils~high Z! reducing the photon flux by
99.99% and lowZ aluminum foils reducing the photon flux
only by 30%. These stacks of foils can be moved parallel to
each other with respect to the beam, resulting in arrays of
microplanar beams~microbeams! having a width which can
be set in the nominal interval of 5–50mm, and with a fixed
peak-to-peak interval of;210 mm. During the manufacture
of the collimator, significant variations in curvature and
thickness of the gold and aluminum foils were introduced. In
addition to these limitations, the intrinsic divergence of the
wiggler source introduces further variations in every single
microbeam width. In the case discussed here, where the av-
erage FWHM of the microbeams width was 25mm, the
variation range of their FWHM was 19–39mm. However,
the two central microbeams used for our dose measurements
measure~25.1560.01! mm in FWHM ~Fig. 5!. A standard
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alignment procedure for the collimator is applied to ensure
an optimal production of microbeams, aiming at the ideal
case of the gold parts not cutting the edges of a microbeam.
In order to characterize the individual microbeams, a scan
using polished tungsten slits with an aperture width of 5mm
and a 1mm step size was done to measure the FWHM of
each beam.

IX. RESULTS

The substantial fluctuation of630% in the FWHM of the
peaks is probably an important factor in understanding dif-
ferences between our measurements and the calculations
made under the assumption of 48 perfectly planar micro-
beams with a 25mm FWHM each. The error for PVDRs
associated herewith was estimated to be only 2%. The lowest
PVDRs are located at the vertical center of all microbeams,
which corresponds therefore radiobiologically to the most
crucial area and our focus of interest in this study.

Figures 6 and 7 show peak and valley doses measured on
peak No. 25 and the valley dose between peak 25 and peak
No. 26. These were the only neighboring microbeams with
25.1 and, respectively 25.2mm FWHM in the middle of the
field. The corresponding PVDRs of these central beams are
illustrated in Fig. 8. The data points are averaged for at least

two independent measurements, not necessarily with the
same absorbed dose. They are scaled for the current in the
storage ring and the measured exposure time, which are both
linear factors.

Figure 7 shows a discrepancy between the simulated and
measured relative dose in the depth-dose profile at depths
greater than 12 mm~up to 60 mm!. The reason for this dis-
crepancy can be explained by the different energy response
of the MOSFET due to the change of the microbeam energy
spectrum relative to the spectrum used for the calibration.
The energy response of the MOSFET detector for x-ray
fields has been addressed previously.26,27 In Fig. 7 no such
discrepancies exist due to the fact that the valley dose is
made up from scattered components from the primary beams
and therefore the change in energy spectrum is less signifi-
cant.

From the graphs of the measured data points in Figs. 6
and 7 we can apply an average PVDR of about 60 between
the absorbed dose in the peak and in the valley at identical
depth values. Since this PVDR is radiobiologically impor-
tant, Fig. 8 visualizes that a PVDR of about 60 results in a
good match of both curves measured by the MOSFET detec-
tor.

FIG. 6. Measured and calculated peak doses at different depths of a 10
310310 cm3 PMMA phantom.

FIG. 7. Measured and calculated valley dose at different depths of a 10
310310 cm3 PMMA phantom.

FIG. 5. The measured FWHM values of the microbeams. The average
FWHM for the two central microbeams is~25.1560.01! mm.

FIG. 8. Valley doses~squares! at different depths multiplied by a factor of 60
overlapped with peak doses~triangle! at identical depth positions.
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Since the decrease in dose versus depth for the peak dose
and the valley dose is different, the curves show a different
slope, indicating a more rapid decrease of the photons re-
sponsible for the dose in the microbeams, the reason for the
peak–valley ratios decreasing in depth.

The PVDRs do not only depend on the position in depth,
the size and number of the microbeams and the phantom
size, etc., but as well on the location within the field, since
the valley dose is more significant filled up in the center of
the microbeam field due to the overlapping tails of each in-
dividual microbeam. For this reason, the PVDR in the center
is the lowest and most critical. To verify this trend, we did
measure the peak dose in peak N.1 and the valley dose be-
tween peak N.1 and peak N.2. The values reported in Fig. 9
show an expected increase of about 30% in PVDRs in com-
parison with the curve obtained for dose measurements be-
tween peaks 25 and 26.

The theoretical Monte Carlo calculations consider the ab-
sorbed dose distribution around one single 25mm diameter
planar microbeam of photons for a given energy spectrum in
a water-equivalent phantom such as like PMMA. The peaks
are placed 210mm apart and the multiple addition of the tails
around the 48 microbeams then result in the valley dose. The
tail of the most external microbeam extending towards the
outside was measured by a scan using a small step size and
long counting rates until the background noise detection had
been reached. The result in Fig. 10 clearly shows that theo-
retical calculations should go as far out as 2 cm from the
peak of one microbeam in order to take all scattering pro-
cesses and related energy depositions for the correct valley
dose calculation into account.

X. DISCUSSION AND CONCLUSIONS

The measurements using the MOSFET detector in ‘‘edge-
on’’ mode demonstrated reproducible results matching well
with theoretical calculations using the PSI-version of the
GEANT Monte Carlo code. Absolute dose measurements in
the peaks and in the valleys are about 20% less than the
theoretically expected values. This gives credence to the con-
clusion that the calculation of the homogeneous photon flux
through the rather sophisticated multislit collimator is not

realistic but this is difficult to achieve, since the exact geom-
etry of the multislit collimator is an unknown. However, the
important results of this work are the measured PVDRs con-
firming theoretical calculations within 5% over the entire
range in depth. This is far more important, since for possible
future therapeutic applications of MRT, the maximum peak
dose is not the decisive factor; it must be ensured that the
valley dose stays below a well-known tolerance dose value
through the entire irradiated tissue volume in order to take
advantage of the rapid repair of microscopic radiogenic le-
sions.

Our results demonstrating a good match of PVDRs 60 for
the measured and calculated dose are obviously only a con-
firmation for this particular geometry. More studies are nec-
essary to validate our Monte Carlo calculations when other
important parameters such as field size, microbeam size, and
size of the phantom vary.

Even to a tissue depth of 62 mm, PVDRs only decrease
from 91 to 65 and from 62 to 55 for the radial and central
microbeams, respectively. This is very important considering
a maximum depth of a tumor location to be reached where
still sufficiently high enough PVDRs have to be attained.
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