105 research outputs found

    The mathematical simulation of the temperature fields of building envelopes under permanent frozen soil conditions

    Get PDF
    The physical-mathematical model of the thermal state of the aired technical underground taking into account the air exchange and design features of construction under permanent frozen soil conditions has been suggested. The computational scheme of the temperature fields prediction of building envelopes of projected buildings and soil under and nearby buildings has been developed. The numerical simulation of the temperature fields of building envelopes changes was conducted during a year. The results of the numerical simulation showed that the heat coming from the technical undergrounds and through the walls does not influence the temperature field of the soil neither under a building nor at a distance from it

    Performances and stability of a 2.4 ton Gd organic liquid scintillator target for antineutrino detection

    Full text link
    In this work we report the performances and the chemical and physical properties of a (2 x 1.2) ton organic liquid scintillator target doped with Gd up to ~0.1%, and the results of a 2 year long stability survey. In particular we have monitored the amount of both Gd and primary fluor actually in solution, the optical and fluorescent properties of the Gd-doped liquid scintillator (GdLS) and its performances as a neutron detector, namely neutron capture efficiency and average capture time. The experimental survey is ongoing, the target being continuously monitored. After two years from the doping time the performances of the Gd-doped liquid scintillator do not show any hint of degradation and instability; this conclusion comes both from the laboratory measurements and from the "in-tank" measurements. This is the largest stable Gd-doped organic liquid scintillator target ever produced and continuously operated for a long period

    Effects of Nitrogen contamination in liquid Argon

    Full text link
    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Biological decolorization of xanthene dyes by anaerobic granular biomass

    Get PDF
    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes—Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L−1, while the process rates were independent of the biomass concentration above 1.89 g VSS L−1. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L−1 AC0). Using different modified AC samples (from the treatment of AC0), a threefold higher rate was obtained with the most basic one, \textAC\textH2ACH2, as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na2S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.This work was supported by the PTDC/AMB/69335/2006 project grants (Fundacao para a Ciencia e Technologia, FCT, Portugal), BRAIN project (ID 6681, European Social Found and Romanian Government and the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011

    Fizikalni mehanizmi i metode u tumorskim terapijama i prijenosu lijekova do tumora

    Get PDF
    In addition to several well-known drug delivery strategies developed to facilitate effective chemotherapy with anticancer agents, some new approaches have been recently established, based on specific effects arising from the applications of ultrasound, magnetic and electric fields on drug delivery systems. This paper gives an overview of newly developed methods of drug delivery to tumors and of the related anticancer therapies based on the combined use of different physical methods and specific drug carriers. The conventional strategies and new approaches have been put into perspective to revisit the existing and to propose new directions to overcome the threatening problem of cancer diseases.Osim dobro poznatih metoda prijenosa lijekova u kemoterapijskom pristupu liječenja tumora, nedavno su otkriveni novi načini prijenosa koji se zasnivaju na specifičnim mehanizmima uzrokovanim upotrebom ultrazvuka, magnetskih i električnih polja. Članak sadrži prikaz fizikalnih mehanizama na kojima se temelje ove nove metode, kao i pregled novootkrivenih prijenosnika lijekova (Pluronske micele, magnetoliposomi, magnetski fluidi), novih terapija tumora (magnetska hipertermija, elektrokemoterapija) i najnovijih istraživanja temeljenih na fizikalnom pristupu ovoj problematici

    Method of athletic gymnastics trainings

    No full text
    Атлетична гімнастика користується популярністю у значної частини населення, особливо в студентів й молоді, багато хто прагне мати гарні форми тіла, потужні сильні м'язи й горду поставу, що залежить від методики проведення занять.Athletic gymnastics uses popularity at considerable part of population, especially for students and young people, many aims to have beautiful forms of body, powerful strong muscles and proud carriage that depend on the method of trainings conducting
    corecore