821 research outputs found

    Halpha and 4000 Angstrom Break Measurements for ~3500 K-selected Galaxies at 0.5<z<2.0

    Full text link
    We measure spectral features of ~3500 K-selected galaxies at 0.5<z<2.0 from high quality medium-band photometry using a new technique. First, we divide the galaxy sample in 32 subsamples based on the similarities between the full spectral energy distributions (SEDs) of the galaxies. For each of these 32 galaxy types we construct a composite SED by de-redshifting and scaling the observed photometry. This approach increases the signal-to-noise ratio and sampling of galaxy SEDs and allows for model-independent stellar population studies. The composite SEDs are of spectroscopic quality, and facilitate -- for the first time -- Halpha measurement for a large magnitude-limited sample of distant galaxies. The linewidths indicate a photometric redshift uncertainty of dz<0.02x(1+z). The composite SEDs also show the Balmer and 4000 Angstrom breaks, MgII absorption at ~2800 Angstrom, the dust absorption feature at 2175 Angstrom, and blended [OIII]+Hbeta emission. We compare the total equivalent width of Halpha, [NII], and [SII] (W_Halpha+) with the strength of the 4000 Angstrom break (D(4000)) and the best-fit specific star formation rate, and find that all these properties are strongly correlated. This is a reassuring result, as currently most distant stellar population studies are based on just continuum emission. Furthermore, the relation between W_Halpha+ and Dn(4000) provides interesting clues to the SFHs of galaxies, as these features are sensitive to different stellar ages. We find that the correlation between W_Halpha+ and D(4000) at 0.5<z<2.0 is similar to z~0, and that the suppression of star formation in galaxies at z<2 is generally not abrupt, but a gradual process.Comment: Accepted for publication in ApJ; high-resolution version can be downloaded at https://www.cfa.harvard.edu/~mkriek/papers

    X-ray properties of K-selected galaxies at 0.5<z<2.0: Investigating trends with stellar mass, redshift and spectral type

    Full text link
    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of ~3500 galaxies at 0.5<z<2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS (C-COSMOS) data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000\AA breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low and high mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000\AA breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.Comment: 9 pages, 9 figures, ApJ accepte

    Massive quenched galaxies at z~0.7 retain large molecular gas reservoirs

    Full text link
    The physical mechanisms that quench star formation, turning blue star-forming galaxies into red quiescent galaxies, remain unclear. In this Letter, we investigate the role of gas supply in suppressing star formation by studying the molecular gas content of post-starburst galaxies. Leveraging the wide area of the SDSS, we identify a sample of massive intermediate-redshift galaxies that have just ended their primary epoch of star formation. We present ALMA CO(2-1) observations of two of these post-starburst galaxies at z~0.7 with M* ~ 2x10^11 Msun. Their molecular gas reservoirs of (6.4 +/- 0.8) x 10^9 Msun and (34.0 +/- 1.6) x 10^9 Msun are an order of magnitude larger than comparable-mass galaxies in the local universe. Our observations suggest that quenching does not require the total removal or depletion of molecular gas, as many quenching models suggest. However, further observations are required both to determine if these apparently quiescent objects host highly obscured star formation and to investigate the intrinsic variation in the molecular gas properties of post-starburst galaxies.Comment: Accepted for publication in ApJ Letters (6 pages, 5 figures

    Ages of massive galaxies at 0.5<z<2.00.5 < z < 2.0 from 3D-HST rest-frame optical spectroscopy

    Full text link
    We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z=2.0z=2.0 and fit them with commonly used stellar population synthesis models: BC03 (Bruzual & Charlot, 2003), FSPS10 (Flexible Stellar Population Synthesis, Conroy & Gunn 2010), and FSPS-C3K (Conroy, Kurucz, Cargile, Castelli, in prep). The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features, and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z=2z=2. We select massive galaxies (log(M/M)>10.8\rm log(M_{*} / M_{\odot}) > 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in 3 redshift bins between z=0.5z=0.5 and z=2.0z=2.0. We find that stellar population models fit the observations well at wavelengths below 6500A˚\rm 6500 \AA rest-frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with a χred2\chi^2_{red} statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z0.75z \sim 0.75 to 1.5 Gyr at z1.75z \sim 1.75, with an uncertainty of a factor of 2 caused by the unknown metallicity. On average the stellar ages are half the age of the Universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.Comment: 13 pages, 15 figures, accepted for publication in Ap

    Trained and Amphetamine-Induced Circling Behavior in Lesioned, Transplanted Rats

    Get PDF
    Rats were trained to turn for water reinforcement and then were given unilateral 6- hydroxydopamine lesions. After lesion, rats showed deficits in trained turning both contraand ipsilateral to the side of the lesion, with contralateral turning more severely impaired. The lesioned rats were then transplanted with fetal mesencephalic dopamine tissue into striatum. A control group of lesioned rats were sham transplanted. Four weeks after transplant, 1.5 mg/kg D-amphetamine challenge injections were used to test the functioning of the transplants. In the control rats, D-amphetamine induced ipsilateral turning; in transplanted rats, D-amphetamine slowed the rate of ipsilateral turning or reversed the direction of amphetamine-induced rotation. Only rats which reversed their, amphetamine-induced turn direction after transplant were used for the rest of the experiment. Trained turning was assessed at 4, 8, 12 and 16 weeks post transplant. Transplants did not improve learned performance at any time post transplant. When D-amphetamine was administered in conjunction with the trained turning sessions, a low dose (0.12 mg/kg) enhanced contralateral trained turn rates, without affecting ipsilateral turn rates. Higher doses of amphetamine reduced ipsilateral turn rate in the transplanted animals. The results of this study suggest that transplants alone do not reinstate performance of conditioned rotation

    The MOSDEF Survey: Mass, Metallicity, and Star-formation Rate at z~2.3

    Full text link
    We present results on the z~2.3 mass-metallicity relation (MZR) using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. We use an initial sample of 87 star-forming galaxies with spectroscopic coverage of H\beta, [OIII]\lambda 5007, H\alpha, and [NII]\lambda 6584 rest-frame optical emission lines, and estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators. We find a positive correlation between stellar mass and metallicity among individual z~2.3 galaxies using both the N2 and O3N2 indicators. We also measure the emission-line ratios and corresponding oxygen abundances for composite spectra in bins of stellar mass. Among composite spectra, we find a monotonic increase in metallicity with increasing stellar mass, offset ~0.15-0.3 dex below the local MZR. When the sample is divided at the median star-formation rate (SFR), we do not observe significant SFR dependence of the z~2.3 MZR among either individual galaxies or composite spectra. We furthermore find that z~2.3 galaxies have metallicities ~0.1 dex lower at a given stellar mass and SFR than is observed locally. This offset suggests that high-redshift galaxies do not fall on the local "fundamental metallicity relation" among stellar mass, metallicity, and SFR, and may provide evidence of a phase of galaxy growth in which the gas reservoir is built up due to inflow rates that are higher than star-formation and outflow rates. However, robust conclusions regarding the gas-phase oxygen abundances of high-redshift galaxies await a systematic reappraisal of the application of locally calibrated metallicity indicators at high redshift.Comment: 12 pages, 6 figures, accepted for publication in the Astrophysical Journal (ApJ

    The MOSDEF Survey: Detection of [OIII]λ\lambda4363 and the direct-method oxygen abundance of a star-forming galaxy at z=3.08

    Full text link
    We present measurements of the electron-temperature based oxygen abundance for a highly star-forming galaxy at z=3.08, COSMOS-1908. This is the highest redshift at which [OIII]λ\lambda4363 has been detected, and the first time that this line has been measured at z>2. We estimate an oxygen abundance of 12+log(O/H)=8.000.14+0.13=8.00^{+0.13}_{-0.14}. This galaxy is a low-mass (109.310^{9.3} M_{\odot}), highly star-forming (50\sim50 M_{\odot} yr1^{-1}) system that hosts a young stellar population (160\sim160 Myr). We investigate the physical conditions of the ionized gas in COSMOS-1908 and find that this galaxy has a high ionization parameter, little nebular reddening (E(BV)gas<0.14E(B-V)_{\rm gas}<0.14), and a high electron density (ne500n_e\sim500 cm3^{-3}). We compare the ratios of strong oxygen, neon, and hydrogen lines to the direct-method oxygen abundance for COSMOS-1908 and additional star-forming galaxies at z=0-1.8 with [OIII]λ\lambda4363 measurements, and show that galaxies at z\sim1-3 follow the same strong-line correlations as galaxies in the local universe. This agreement suggests that the relationship between ionization parameter and O/H is similar for z\sim0 and high-redshift galaxies. These results imply that metallicity calibrations based on lines of oxygen, neon, and hydrogen do not strongly evolve with redshift and can reliably estimate abundances out to z\sim3, paving the way for robust measurements of the evolution of the mass-metallicity relation to high redshift.Comment: 7 pages, 3 figures, 1 table, accepted to ApJ Letter

    The MOSDEF Survey: Excitation Properties of z2.3z\sim 2.3 Star-forming Galaxies

    Full text link
    We present results on the excitation properties of z~2.3 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) Survey. With its coverage of the full suite of strong rest-frame optical emission lines, MOSDEF provides an unprecedented view of the rest-frame optical spectra of a representative sample of distant star-forming galaxies. We investigate the locations of z~2.3 MOSDEF galaxies in multiple emission-line diagnostic diagrams. These include the [OIII]/Hb vs. [NII]/Ha and [OIII]/Hb vs. [SII]/Ha "BPT" diagrams, as well as the O_32 vs. R_23 excitation diagram. We recover the well-known offset in the star-forming sequence of high-redshift galaxies in the [OIII]/Hb vs. [NII]/Ha BPT diagram relative to SDSS star-forming galaxies. However, the shift for our rest-frame optically selected sample is less significant than for rest-frame-UV selected and emission-line selected galaxies at z~2. Furthermore, we find that the offset is mass-dependent, only appearing within the low-mass half of the z~2.3 MOSDEF sample, where galaxies are shifted towards higher [NII]/Ha at fixed [OIII]/Hb. Within the [OIII]/Hb vs. [SII]/Ha and O_32 vs. R_23 diagrams, we find that z~2.3 galaxies are distributed like local ones, and therefore attribute the shift in the [OIII]/Hb vs. [NII]/Ha BPT diagram to elevated N/O abundance ratios among lower-mass (M_*<10^10 M_sun) high-redshift galaxies. The variation in N/O ratios calls into question the use at high redshift of oxygen abundance indicators based on nitrogen lines, but the apparent invariance with redshift of the excitation sequence in the O_32 vs. R_23 diagram paves the way for using the combination of O_32 and R_23 as an unbiased metallicity indicator over a wide range in redshift. This indicator will allow for an accurate characterization of the shape and normalization of the mass-metallicity relationship over more than 10 Gyr.Comment: 14 pages, 9 figures, accepted to Ap

    The MOSDEF Survey: Electron Density and Ionization Parameter at z2.3z\sim2.3

    Full text link
    Using observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey, we investigate the physical conditions of star-forming regions in z2.3z\sim2.3 galaxies, specifically the electron density and ionization state. From measurements of the [O II]λλ\lambda\lambda3726,3729 and [S II]λλ\lambda\lambda6716,6731 doublets, we find a median electron density of 250\sim250 cm3^{-3} at z2.3z\sim2.3, an increase of an order of magnitude compared to measurements of galaxies at z0z\sim0. While z2.3z\sim2.3 galaxies are offset towards significantly higher O32_{32} values relative to local galaxies at fixed stellar mass, we find that the high-redshift sample follows a similar distribution to the low-metallicity tail of the local distribution in the O32_{32} vs. R23_{23} and O3N2 diagrams. Based on these results, we propose that z2.3z\sim2.3 star-forming galaxies have the same ionization parameter as local galaxies at fixed metallicity. In combination with simple photoionization models, the position of local and z2.3z\sim2.3 galaxies in excitation diagrams suggests that there is no significant change in the hardness of the ionizing spectrum at fixed metallicity from z0z\sim0 to z2.3z\sim2.3. We find that z2.3z\sim2.3 galaxies show no offset compared to low-metallicity local galaxies in emission line ratio diagrams involving only lines of hydrogen, oxygen, and sulfur, but show a systematic offset in diagrams involving [N II]λ\lambda6584. We conclude that the offset of z2.3z\sim2.3 galaxies from the local star-forming sequence in the [N II] BPT diagram is primarily driven by elevated N/O at fixed O/H compared to local galaxies. These results suggest that the local gas-phase and stellar metallicity sets the ionization state of star-forming regions at z0z\sim0 and z2z\sim2.Comment: 26 pages, 14 figures, accepted to Ap
    corecore