11,730 research outputs found
The effects of socioeconomic status and indices of physical environment on reduced birth weight and preterm births in Eastern Massachusetts
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Air pollution and social characteristics have been shown to affect indicators of health. While use of spatial methods to estimate exposure to air pollution has increased the power to detect effects, questions have been raised about potential for confounding by social factors.Methods: A study of singleton births in Eastern Massachusetts was conducted between 1996 and 2002 to examine the association between indicators of traffic, land use, individual and area-based socioeconomic measures (SEM), and birth outcomes ( birth weight, small for gestational age and preterm births), in a two-level hierarchical model.Results: We found effects of both individual ( education, race, prenatal care index) and area-based ( median household income) SEM with all birth outcomes. The associations for traffic and land use variables were mainly seen with birth weight, with an exception for an effect of cumulative traffic density on small for gestational age. Race/ethnicity of mother was an important predictor of birth outcomes and a strong confounder for both area-based SEM and indices of physical environment. The effects of traffic and land use differed by level of education and median household income.Conclusion: Overall, the findings of the study suggested greater likelihood of reduced birth weight and preterm births among the more socially disadvantaged, and a greater risk of reduced birth weight associated with traffic exposures. Results revealed the importance of controlling simultaneously for SEM and environmental exposures as the way to better understand determinants of health.This work is supported by the Harvard Environmental Protection Agency (EPA) Center,
Grants R827353 and R-832416, and National Institute for Environmental Health Science (NIEHS) ES-0002
Lesbian and bisexual women's experiences of sexuality-based discrimination and their appearance concerns
Lesbian and bisexual women frequently experience sexuality-based discrimination, which is often based on others' judgements about their appearance. This short article aims to explore whether there is a relationship between lesbian and bisexual women's experiences of sexuality-based discrimination and their satisfaction with the way that they look. Findings from an online survey suggest that discrimination is negatively related to appearance satisfaction for lesbian women, but not for bisexual women. It is argued that this difference exists because lesbian appearance norms are more recognisable and distinctive than bisexual women's appearance norms
Nondispersive solutions to the L2-critical half-wave equation
We consider the focusing -critical half-wave equation in one space
dimension where denotes the
first-order fractional derivative. Standard arguments show that there is a
critical threshold such that all solutions with extend globally in time, while solutions with may develop singularities in finite time.
In this paper, we first prove the existence of a family of traveling waves
with subcritical arbitrarily small mass. We then give a second example of
nondispersive dynamics and show the existence of finite-time blowup solutions
with minimal mass . More precisely, we construct a
family of minimal mass blowup solutions that are parametrized by the energy
and the linear momentum . In particular, our main result
(and its proof) can be seen as a model scenario of minimal mass blowup for
-critical nonlinear PDE with nonlocal dispersion.Comment: 51 page
Advanced model-based control studies for the induction and maintenance of intravenous anaesthesia
This paper describes strategies toward model-based automation of intravenous anaesthesia employing advanced control techniques. In particular, based on a detailed compartmental mathematical model featuring pharmacokinetic and pharmacodynamics information, two alternative model predictive control strategies are presented: a model predictive control strategy, based on online optimization, the extended predictive self-adaptive control and a multiparametric control strategy based on offline optimization, the multiparametric model predictive control. The multiparametric features to account for the effect of nonlinearity and the impact of estimation are also described. The control strategies are tested on a set of 12 virtually generated patient models for the regulation of the depth of anaesthesia by means of the bispectral index (BIS) using Propofol as the administrated anaesthetic. The simulations show fast response, suitability of dose, and robustness to induce and maintain the desired BIS setpoint
Generator Coordinate Method Calculations for Ground and First Excited Collective States in He, O and Ca Nuclei
The main characteristics of the ground and, in particular, the first excited
monopole state in the He, O and Ca nuclei are studied
within the generator coordinate method using Skyrme-type effective forces and
three construction potentials, namely the harmonic-oscillator, the square-well
and Woods-Saxon potentials. Calculations of density distributions, radii,
nucleon momentum distributions, natural orbitals, occupation numbers and
depletions of the Fermi sea, as well as of pair density and momentum
distributions are carried out. A comparison of these quantities for both ground
and first excited monopole states with the available empirical data and with
the results of other theoretical methods are given and discussed in detail.Comment: 15 pages, LaTeX, 6 Postscript figures, submitted to EPJ
Do topology and ferromagnetism cooperate at the EuS/BiSe interface?
We probe the local magnetic properties of interfaces between the insulating
ferromagnet EuS and the topological insulator BiSe using low energy
muon spin rotation (LE-SR). We compare these to the interface between EuS
and the topologically trivial metal, titanium. Below the magnetic transition of
EuS, we detect strong local magnetic fields which extend several nm into the
adjacent layer and cause a complete depolarization of the muons. However, in
both BiSe and titanium we measure similar local magnetic fields,
implying that their origin is mostly independent of the topological properties
of the interface electronic states. In addition, we use resonant soft X-ray
angle resolved photoemission spectroscopy (SX-ARPES) to probe the electronic
band structure at the interface between EuS and BiSe. By tuning the
photon energy to the Eu anti-resonance at the Eu pre-edge we are able to
detect the BiSe conduction band, through a protective AlO
capping layer and the EuS layer. Moreover, we observe a signature of an
interface-induced modification of the buried BiSe wave functions and/or
the presence of interface states
Deterministic Partial Differential Equation Model for Dose Calculation in Electron Radiotherapy
Treatment with high energy ionizing radiation is one of the main methods in
modern cancer therapy that is in clinical use. During the last decades, two
main approaches to dose calculation were used, Monte Carlo simulations and
semi-empirical models based on Fermi-Eyges theory. A third way to dose
calculation has only recently attracted attention in the medical physics
community. This approach is based on the deterministic kinetic equations of
radiative transfer. Starting from these, we derive a macroscopic partial
differential equation model for electron transport in tissue. This model
involves an angular closure in the phase space. It is exact for the
free-streaming and the isotropic regime. We solve it numerically by a newly
developed HLLC scheme based on [BerCharDub], that exactly preserves key
properties of the analytical solution on the discrete level. Several numerical
results for test cases from the medical physics literature are presented.Comment: 20 pages, 7 figure
Gravity-induced Wannier-Stark ladder in an optical lattice
We discuss the dynamics of ultracold atoms in an optical potential
accelerated by gravity. The positions and widths of the Wannier-Stark ladder of
resonances are obtained as metastable states. The metastable Wannier-Bloch
states oscillate in a single band with the Bloch period. The width of the
resonance gives the rate transition to the continuum.Comment: 5 pages + 8 eps figures, submitted to Phys. Rev.
- …
