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Abstract— The paper describes strategies towards model-

based automation of intravenous anaesthesia employing 

advanced control techniques. In particular, based on a detailed 

compartmental mathematical model featuring pharmacokinetic 

and pharmacodynamics information two alternative model 

predictive control strategies are presented: a model predictive 

control strategy, based on online optimisation, the Extended 

Predictive Self Adaptive Control (EPSAC) and a multi-

parametric control strategy based on offline optimisation, the 

multi-parametric model predictive control (mp-MPC). The 

multi-parametric features to account for the effect of nonlinearity 

and the impact of estimation are also described. The control 

strategies are tested on a set of 12 virtually generated patient 

models for the regulation of the depth of anaesthesia (DOA) by 

means of the Bispectral Index (BIS) using Propofol as the 

administrated anaestetic. The simulations show fast response, 

suitability of dose and robustness to induce and maintain the 

desired BIS setpoint. 
 

Index Terms—Anaesthesia, inter-patient variability, MPC, 

EPSAC, mp-MPC, estimation  

I. INTRODUCTION 

NAESTHESIA plays a very important role in surgery and in 

the intensive care unit. It is defined as a reversible 

pharmacological state of the patient where hypnosis, 

analgesia and muscle relaxation are guaranteed [1]. Analgesics 

block the sensation of pain; hypnotics produce 

unconsciousness, while muscle relaxants prevent unwanted 

movement of muscle tone. 

The role of the anaesthetist has become more complex and 

indispensable to maintain the patients’ vital functions before, 

during and after surgery. To estimate the drug effect in the 

patient’s body and calculate the corresponding drug infusion 

rates average population models are used. These strategies 

may not always be safe for the patient since they do not take 
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into account any measured variable in a feedback control 

scheme and even if they reach the desired level of sedation 

fast, it can result in unsafe minimal values (undershoot) [1]. In 

stress situations the anaesthetist has to deal with routine 

assessments and simultaneously solve complex problems 

quickly. The automation of some routine actions of the 

anaesthetist can reduce the workload and consequently 

increase the safety of the patient. 

 The control of anaesthesia poses a manifold of challenges: 

inter- and intra-patient variability, multivariable 

characteristics, variable time delays, dynamics dependent on 

the hypnotic agent, model analysis variability, agent and 

stability issues [2], [3]. Hitherto, many PID tuning techniques 

have been elaborated. Since these classical controllers have no 

prior knowledge of the drug metabolism they cannot anticipate 

the response of the patient and their performance may be sub-

optimal. Other authors developed model based strategies using 

fuzzy [4], predictive [5], [6], [7], robust [8], [9], adaptive [2], 

[10] and multi-parametric MPC [11] control algorithms and 

applied them in clinical trials. 

 Drugs given for the induction and maintenance of DOA can 

be either inhalational or intravenous anaesthetics. An 

individualised physiological based, patient specific, 

compartmental model for volatile anaesthesia is presented and 

developed in [12] and a combined strategy of model predictive 

control (MPC) and estimation under uncertainty is presented 

in [13]. For intravenous anaesthesia, robustness tests of MPC 

for DOA using the EPSAC for a single input single output 

(SISO) model is presented in [14] , different protocols for the 

administration of Propofol and Remifentanil (multiple input 

single output (MISO) model) are evaluated in [15] and in [16] 

a second output variable is determined, that originates from 

the effect of Remifetanil and leads to the implementation of a 

MIMO algorithm. 

MPC is a model-based control technique that calculates the 

optimal control action considering constraints on the input, 

output and state variables by solving an optimization problem. 

The downside of this control technique is that the optimization 

problem has to be solved online. One way to avoid this is to 

use explicit/multi-parametric MPC which solves offline the 

optimization problem using multi-parametric programming 

and derives the control inputs as a set of explicit functions of 

the system states. An important advantage of mp-MPC is that 

the previously offline computed control laws can be easily 

implemented on embedded controllers. These types of devices 

use programming languages that cannot support powerful 
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mathematical computations. The optimal control laws are 

retrievable immediately through simple function evaluations. 

The aim of this paper is to design and compare four 

different types of model based controllers for administration 

of Propofol during ICU (Intensive Care Unit) sedation. Based 

on a compartmental pharmacokinetic (PK) and 

pharmacodynamic (PD) patient model, a predictive controller 

is first designed using an Extended Predictive Self Adaptive 

(EPSAC) strategy and three predictive controllers are designed 

using a mp-MPC strategy. The difference between the three 

controllers based on mp-MPC strategy is that one of them uses 

the linearized patient model whereas the other two use the 

compensation of the nonlinear part of the patient model. In 

one of the two controllers using the nonlinear compensation, 

the states are estimated using an online estimator, whilst for 

the other one the states are computed using the nominal 

patient model. 

The paper is organized as follows: the patient model, the 

multi-parametric control strategy, the EPSAC strategy and the 

design of the controllers are presented in the following section. 

Section 3 presents the simulation results for the induction and 

maintenance phase and discussions are presented in Section 4.  

Finally Section 5 summarizes the main outcome of this paper.  

II. THEORETICAL BACKGROUND 

A. Patient Model 

A compartmental model is used to describe the 

pharmacokinetic (PK) – pharmacodynamic (PD) blocks 

representing the distribution of drugs in the body, i.e. mass 

balance. The pharmacokinetic model represents the relation 

between the drug administration and drug concentration in the 

body, whereas the PD model represents the relation between 

the concentration of the drug in the central compartment and 

the effect observed on the patient. In each compartment the 

drug concentration is assumed to be uniform, as perfect and 

instantaneous mixing is assumed. The structure of the 

compartmental model is depicted in Fig. 1 [17], [18] .[10, 14]  

 
Fig. 1.  Compartmental model of the patient, where PK denotes the 

pharmacokinetic model and PD denotes the pharmacodynamic model. 

The PK-PD models most commonly used for Propofol are 

the 4
th

 order compartmental model described by Schnider [18], 

[19] and Minto [20], [21], respectively. These models, 

developed, tested and validated on a wide range of real patient 

data are commonly used in literature for the control of 

anaesthesia. 

PK describes the distribution of the drug in the human 

body. The PK model and the first term of the PD model are 

considered linear studied on real patient data with the 

collaboration of anaesthesiologists and validated using blood 

samples provided by hospitals. [18, 19, 22]: 
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where 1x represents the drug concentration in the central 

compartment [mg/l]. The peripheral compartments 2 (muscle) 

and 3 (fat) model the drug exchange of the blood with well 

and poorly diffused body tissues. The concentrations of drug 

in the fast and slow equilibrating peripheral compartments are 

denoted by x2 and x3 respectively. The parameters kij for i≠j, 

denote the drug transfer frequency from the i
th

 to the j
th 

compartment and u(t) [mg/min] is the infusion rate of the 

anaesthetic or analgesic  drug into the central compartment. 

The parameters kij of the PK models depend on age, weight, 

height and gender and can be calculated for Propofol: 

][min 456.0 ],[min k ],[min k

],[min k ],[min k ],[min k

]min/[ 836.0C ],min/[ )53(024.029.1C

]min/[ )177(264.0        

59)-0.0681( -77)-0.456(1.89C

][ 2.38V ],[ 53)-(0.391-18.9V ],[ 27.4

1

0

1

3

3
31

1

2

2
21

1

1

3
13

1

1

2
12

1

1

1
10

13l2

l1

321

















e
ll

lll

k
V

C

V

C

V

C

V

C

V

C

llage

lheight

lbmweight

llagelV

(2)

 

where Cl1 is the rate at which the drug is cleared from the 

body, and Cl2 and Cl3 are the rates at which the drug is 

removed from the central compartment to the other two 

compartments by distribution.  

The lean body mass (lbm) for men (m) and women (f) are 

calculated by: 
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An additional hypothetical effect compartment is added to 

represent the lag between plasma drug concentration and drug 

response. The drug concentration in this compartment is 

represented by xe, called the effect-site compartment 

concentration. The effect compartment receives drug from the 

central compartment by a first-order process and it is 

considered as a virtual additional compartment. Therefore, the 

drug transfer frequency for Propofol from the central 

compartment to the effect site-compartment is considered in 

clinical practice to be equal to the frequency of drug removal 

from the effect-site compartment ke0=k1e=0.456 [min
-1

] [18], 

[19], [23]. When considering the drug effect observed on the 

patient, the BIS variable can be related to the effect drug 

concentration Ce by the empirical static nonlinear relationship 

[5], [6], [18], [19], [23], called also the Hill curve: 
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Notice that in the model used in this paper Ce = xe.  
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E0 denotes the baseline value (awake state - without drug), 

which by convention is typically assigned a value of 100, Emax 

denotes the maximum effect achieved by the drug infusion, 

EC50 is the drug concentration at 50% of the maximal effect 

and represents the patient sensitivity to the drug, and γ 

determines the steepness of the curve. 

The inverse of the Hill curve can be defined by the 

following formulation: 
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The type of models that consider a linear dynamic followed 

by a nonlinear dynamic system are called Wiener-

Hammarstein models and are presented in Fig. 2. These type 

of models have been widely used in control of anaesthesia 

[23]. For the automatic regulation of depth of anaesthesia 

(DOA) in Fig. 2 the anaesthetic agent, i.e. Propofol, is the 

input and the Bispectral Index (BIS) the output of the system. 

Because of its pharmacological profile, Propofol is applicable 

for both induction and maintenance of hypnosis during 

anaesthesia and intensive care sedation [24]. 

 
Fig. 2.  Schematic representation of the NONLINEAR SISO patient model 

for intravenous anaesthesia 

 

The Bispectral Index (BIS) is a signal that is derived from 

the electro-encephalogram (EEG) used to assess the level of 

consciousness in anaesthesia. A BIS value of 0 equals EEG 

silence,while a BIS value of 100 is the expected value of a 

fully conscious adult patient, 60-70 and 40-60 range represents 

light and moderate hypnotic conditions, respectively. The 

target value during surgery is 50, giving us a gap between 40 

and 60 to guarantee adequate sedation [1], [2], [3]. 

B. Advanced Model Based Control Strategies 

MPC is a control methodology based on two main 

principles: explicit on-line use of a process model to predict 

the process output at future time instants and the computation 

of an optimal control action by minimizing one or more cost 

functions, including constraints on the process variables. 

The main differences between the different types of MPC 

algorithms are: the type of model used to represent the process 

and its disturbances and the cost function(s) to be minimized, 

with or without constraints.  

1) EPSAC Strategy 

For the EPSAC approach, described in detail in [25], the 

controller output is obtained by minimizing the cost function: 
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The design parameters are: N1= the minimum costing horizon 

N2= the maximum costing horizon, N2-N1 = the prediction 

horizon Nu=control horizon,  =weight parameter, n(t) is the 

disturbance, y(t) the measured output and u(t) the model input. 

The signal r represents the reference trajectory.  

In our case the process input is represented by the Propofol 

infusion rate applied to the patient. The process output is 

predicted at time instant t over the prediction horizon N2-N1, 

based on the measurements available at that moment and the 

future outputs of the control signal. The cost function is an 

extended EPSAC cost function that penalizes the control 

movements using the weight parameter λ. 

2) Multi-Parametric Strategy 

Multi-parametric programming is a technique to solve an 

optimization problem, where the objective is to minimize or 

maximize a performance criterion subject to a given set of 

constraints where some of the parameters vary between 

specified lower and upper bounds. The main characteristic of 

mp-MPC is its ability to obtain: (i) the objective and 

optimization variable as a function of the varying parameters, 

and (ii) the regions in the space of the parameters where these 

functions are valid (critical regions) [26, 27] .This reduces the 

online implementation of the MPC to simple function 

evaluation, facilitating real time applications. 

For the mp-MPC, the generic optimization problem solved 

is: 
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where x are states, y outputs and u controls, all (discrete) time 

dependent vectors. The subsets of output variables that get 

tracked have time-dependent set points y
R
. Finally Δu are 

changes in control variables, Δu(k) = u(k) – u(k-1). The 

prediction horizon is denoted by N and control horizon by Nu. 

X, U are the sets of the state and input constraints that contain 

the origin in their interior. Both  Q>0, the objective coefficient 

for the states and P>0, the terminal weight matrix for the 

states, are symmetric semi-positive definite matrices. The 

quadratic matrix for manipulated variables R>0 is a symmetric 

positive matrix, QR is the quadratic matrix for tracked outputs 

and R1 is a weight matrix for the control action changes (Δu). 

The control problem is posed as a quadratic convex 

optimization problem for which an explicit solution can be 

obtained as follows: 
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where s is the number of critical regions. 

C. Control Design 

The presence of the Hill nonlinearity complicates the use of 

linear controller synthesis. Two methods to overcome this 

problem have been proposed: exact and local linearization. 

Exact linearization is based on the compensation of the 

nonlinearity introduced by the Hill curve, in the PD model. 

Since the Hill nonlinearity (4) is a monotonic function (f) of 

the normalized effect site concentration, it has an inverse 

presented in (5). Using a parameter scheduling technique the 

inverse Hill function (f
-1

) could be implemented in the 
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controller as illustrated by the block diagram in Fig. 3. Here f 

is using the nonlinearity parameter of the real patient (E0 , 

Emax, EC50 , γ), while f
-1

 is using the parameter assumed by the 

controller (the nominal patient nonlinearity parameters a priori 

known  (E0
mean

, Emax
 mean

, EC50
 mean

 , γ
 mean

). The controller aims 

at controlling the estimated drug concentration
eĈ , which is 

straight-forward, using a linear controller. 

 
Fig. 3.  MPC control scheme 

An exact linearization occurs only in the case where the 

patient model is identical to the nominal model in which case 

it completely cancels the nonlinearity and 
ee CC ˆ . The local 

linearization is based on the linearized PK-PD model for a BIS 

value of 50 obtained using gPROMS [28] 

 
Fig. 4. Control scheme development flowchart  

An important challenges of DOA control is the high inter- 

and intra- patient variability. This results in different dynamics 

in PK model, and changes in the parameters of the Hill 

function for each patient model. Four control strategies, a 

model predictive controller, Extended Predictive Self 

Adaptive Controller (EPSAC), and three different multi-

parametric model predictive controllers (mp-MPC) are 

designed and evaluated. The framework for the different ways 

of designing the controllers is presented in Fig. 4. 

The patient response is simulated using Patient model 

block, composed of the PK-PD linear part (1) and the 

nonlinear PD part, the Hill nonlinearity (4). BIS can be 

measured, however the states cannot and have to be estimated: 

either using the drug rate and the nominal state space patient 

model, or by using the input and output measured output (BIS) 

of the process, the state space nominal model and a correction 

estimator based on the output changes.  

To analyse the influence of the changes in the dynamics of 

the PK model on the control performances, two types of 

control schemes are implemented, one uses the states given by 

the nominal model (B) and the other uses an estimator to 

adjust the states based on the dynamics of each patient (A).  

The influence to the changes of parameters of the Hill curve 

on the control performances is analysed by two types of 

control schemes, one using the local linearized PK-PD model 

(C) and the second is based on the exact linearization (D). The 

following design parameters are used: the objective 

coefficients for states (x), Q=0 when we have no state 

estimation and Q=1 in the case with state estimation, the 

quadratic matrix for tracked outputs (y), QR=1000, quadratic 

matrix for manipulated variables (u), R=1, the control horizon 

Nu=1 and the prediction horizon N=20 in both mp-MPC and 

EPSAC. The EPSAC has an extra weighting factor λ from (8) 

for which its default value λ=0 was used. The states used in 

the design of the controllers are x1, x2, x3, xe as described in 

(1). The clinically recommended sampling time is of 5 

seconds [6]. N1, N2 and Nu are chosen based on the 

characteristics of the process and the desired performances. 

Based on [29, 30] N should be large, at least 2n-1 but no larger 

than the rise-time of the process. For anaesthesia due to 

medical procedures we are constrained to use a small sampling 

time leads to a choice of a greater value for N. Also, the dead 

time is not considered since it’s very small and does not affect 

the process, therefore N1=1. In choosing Nu, for processes 

with no unstable/underdamped poles, like anaesthesia, Nu=1 is 

generally satisfactory. A choice of the Q, R and QR is given 

by Bryson’s rule [31]. 

1) Case 1: EPSAC 

In this section we apply a particular case of online MPC, the 

EPSAC (Extended Prediction Self-Adaptive Control) strategy 

described in detail in Section 2.3. The structure of the control 

system proposed in this section is shown in Fig. 5.  

 
Fig. 5. Case 1:  EPSAC control scheme 

The Patient block is composed of the PK and PD models. 

Control strategy based on nonlinearity compensation and I/O 

linear nominal patient model is used (Fig.4) The controller 

output is obtained by minimizing cost function (6) with the 

design parameters in section II.B.1 The control algorithm uses 

for prediction a transfer function derived from the PK-PD 

linear model (1). The inverse of the Hill curve (5) is used to 

compensate the nonlinearity. Both the linear model and the 

inverse of the Hill curve use the nominal values from Table 1. 

2) Case 2: mp-MPC without nonlinearity compensation 

The structure of the control scheme is presented in Fig.6. 

This approach uses the explicit/multi-parametric Model 

Predictive Control strategy based on local linearization of the 

PK-PD model and the state space model of the linearized 

nominal patient model (Fig.4). 

To obtain the linearized patient model we will first 

implement the PK and PD model for the nominal patient in 

gPROMS [28] and determine the state space of the linearized 

nominal patient model at BIS=50. Using these matrices the 

mp-QP optimization problem (7) is solved to obtain the 

critical regions CR, using a Matlab implementation of multi-

parametric quadratic programming algorithm [32] and 

determine the mp-MPC controller. 
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Fig. 6. Case 2: mp-MPC without nonlinearity compensation - control scheme  

3) Case 3: mp-MPC with nonlinearity compensation 

The explicit/multi-parametric Model Predictive Control is 

used again. Control strategy based on nonlinearity 

compensation and the state space model of the PK-PD linear 

part (1) for the nominal patient model is used (Fig.4). The PK-

PD model is no longer linearized as a whole in gPROMS like 

in the previous case (Case2). Instead, the PK-PD linear part 

(1), is implemented in Matlab and is used to obtain the state 

space of the nominal patient characteristics (A, B, C and D 

matrices). Having the state space obtained we solve the mp-

QP optimization problem (7), obtain the (CR) using POP [32] 

and determine the controller based on the nominal patient 

values. 

The inverse of the Hill curve (5) based on the nominal 

patient model parameters is then used to compensate the 

nonlinearity. Note that the states are obtained using the state 

space model based on the A, B, C and D matrices and the drug 

rate u as input. This control scheme is presented in Fig. 7. 

 
Fig. 7. Case 3:mp-MPC with nonlinearity compensation - control scheme  

4) Case 4: mp-MPC with nonlinearity compensation and 

estimation 

This approach also uses the explicit/multi-parametric Model 

Predictive Control strategy. The structure of this control 

scheme is similar to the one described in II.C.3. 

 
Fig. 8. Case 4: mp-MPC with nonlinearity compensation and estimator - 

control scheme 

The difference is that the State Space model nominal patient 

block from Fig.7 is replaced by a State Estimator. Here, the 

real patient states are estimated using a  Kalman filter [33] 

based on the state space of the nominal patient, the online BIS 

measurement and the drug rate. 

III. RESULTS 

In this section the results of a simulation study to evaluate 

the four control strategies, for the administration of Propofol 

are presented. DOA is monitored using the Bispectral Index 

(BIS) during the induction and maintenance phase of general 

anaesthesia. The closed loop control tests are performed on a 

set of 12 patients [14] plus an extra patient representing the 

nominal values of all 12 patients (PaN – patient nominal). The 

parameters values of these patients are given in Table 1 and 

are also used to calculate the parameters of the patient model.  
TABLE 1 

BIOMETRIC VALUES OF THE VIRTUAL PATIENTS 
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γ
 

1 40 163 54 M 6.33 98.8 2.24 

2 36 163 50 M 6.76 98.6 4.29 
3 28 164 52 M 8.44 91.2 4.1 

4 50 163 83 M 6.44 95.9 2.18 

5 28 164 60 F 4.93 94.7 2.46 
6 43 163 59 M 12.0 90.2 2.42 

7 37 187 75 F 8.02 92.0 2.1 

8 38 174 80 M 6.56 95.5 4.12 

9 41 170 70 M 6.15 89.2 6.89 

10 37 167 58 M 13.7 83.1 1.65 

11 42 179 78 F 4.82 91.8 1.85 
12 34 172 58 M 4.95 96.2 1.84 

Mean  38 169 65 M 7.42 93.1 3 

 

All designed controllers are simulated first for the set of 

data presented in Table 1 in order to have a better 

understanding of their behaviour on the different types of 

patients, and analyse the inter- and intra- patient variability. 

Next, the four controllers will be tested against each other and 

simulated for different patients so as to be able to compare 

their performances by means of the BIS index and the 

corresponding Propofol infusion rates. 

A. Induction Phase 

Ideally the induction phase of the patient in an operational 

DOA is performed as fast as possible, such that little time is 

lost before the surgeon can start operating. It is therefore 

desirable that the patient reaches the BIS=50 target and 

remains within the target value without much undershoot or 

overshoot, i.e. values below BIS=40 and above BIS=60 should 

be avoided. In Fig.9, Fig. 11, Fig. 13, Fig. 14 we have the 

simulations of the four controllers for all 12 patients and the 

nominal one in the induction phase. Fig. 10 presents the map 

of the critical region for the controller using local linearization 

(Case 2) and in Fig. 12 we have the map of the critical regions 

for the controllers designed using exact linearization, by using 

the inverse of the Hill curve (Case 3 and 4). 

 

 
Fig.9. BIS output for all 13 patients for Case 1 
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Fig. 10. Map of critical regions Case 2 

 
Fig. 11. BIS output for all 13 patients for Case 2  

 
Fig. 12. Map of critical regions Case 3 and Case 4 

 
Fig. 13. BIS output for all 13 patients for Case 3 

 
Fig. 14. BIS output for all 13 patients for Case 4 

Simulations of some patients show very small oscillations 

around the steady state values. The average settling time for 

EPSAC is approximately 7 min and for the mp-MPC 

controllers is approximately 5 min. In common practice the 

operation procedure does not start until the patient reaches an 

adequate DOA, usually taking up to 15 min. Thus, a rise time 

between 5 min and 7 min gives good performances. 

 
Fig. 15. BIS response for the four controllers for PaN 

 
Fig. 16. Output for the four controllers for the PaN 

 
Fig. 17. BIS response for the four controllers for patient 9 

 
Fig. 18. Output for the four controllers for patient 9 

The best performances are obtained for Case 2. It seems that 

the local linearization is able to deal with inter- and intra- 

patient variability Also, the process was linearized at BIS=50 

which is the value of the controller set point. The EPSAC 

controller is more influenced by inter-patient variability and 

for some patients the settling time has greater values. 

The four controllers: EPSAC and the mp-MPC controllers, 

are simulated, compared for PaN and presented in Fig. 15. For 

patient 9, the most sensitive patient, this simulation is 

presented in Fig. 17. In Fig. 16 and Fig. 18 we have the 

corresponding Propofol infusion rates for the two patients. We 

can observe that due to the less aggressive behaviour of the 

EPSAC controller the output evolution will be smoother. In all 
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the cases, the Propofol infusion rates are limited to 10 mg/s 

due to pump restrictions. The same conclusions as for Fig 9-12 

are valid here. For both simulated patients the EPSAC 

controller has a slower response.  

B. Maintenance Phase 

During the maintenance phase, it is important that the 

controller rejects the disturbances occurred during surgery as 

fast as possible and bring the patient to the BIS target value. In 

this phase, typical disturbances can be applied additively to 

the output of the process to check the controller’s ability to 

reject them [22]. A standard stimulus profile is defined and is 

presented in Fig 17. Each interval denotes a specific event in 

the operation theatre. Stimulus A represents response to 

intubation; B a surgical incision that is followed by a period of 

no surgical stimulation (i.e. waiting for pathology result); C 

mimics an abrupt stimulus after a period of low level 

stimulation; D the onset of a continuous normal surgical 

stimulation; E, F, and G simulate short-lasting, larger 

stimulation within the surgical period; and H represents the 

withdrawal of stimulation during the closing period [34]. 

 

Fig. 19. The artificially generated disturbance signal 

 
Fig. 20. BIS response for the four controllers for PaN with disturbance 

 
Fig. 21. Output for the four controllers for PaN with disturbance 

 
Fig. 22. BIS response for the four controllers for patient 9 with disturbance 

 
Fig.23. Output for the four controllers for patient 9 with disturbance 

In Fig. 20 and Fig. 22 the performance of disturbance 

rejection of the four controllers for PaN and a more sensitive 

patient (patient 9) are shown. The figures present the most 

challenging part of the disturbance rejection test, namely B-C-

D-E. In Fig. 21 and Fig.23 we have the corresponding 

Propofol infusion rate for PaN and patient 9, limited between 

0 and 10 mg/s. The simulations are performed for the 

maintenance phase using the disturbance signal Fig. 19, 

between 60 minutes and 140. The simulations show only small 

differences between the controllers and thus comparable 

performances of all four controllers. For the second control 

scheme the behaviour of the controller is less aggressive, the 

response is slower but it also has the smallest values of the 

undershoot. 

IV. DISCUSSION 

The aim of this study is to evaluate the performance of a 

model based predictive control algorithm and model predictive 

multi-parametric control for automatic induction and control 

of depth of anaesthesia (DOA) during the induction and the 

maintenance phases.  

Some of the most important aspects of this application are 

the high inter- and intra- patient variability, variable time 

delays, dynamics dependent on the hypnotic agent, model 

analysis variability. These are just some of the issues that are 

dealt with when trying to control the DOA.  

In this paper the hypnotic agent Propofol is given as input 

and the output is described by the BIS, resulting in a SISO 

system. SISO patient models for control of most anesthetic 

drugs already exist in the literature and their parameters are 

estimated based on age, weight, gender and height.  

Four different types of controllers are designed and tested. 

The first controller is based on the online optimization EPSAC 

MPC technique. The other three controllers are based on the 

offline optimization mp-MPC: one uses the linearized patient 

model and the other two use the compensation of the nonlinear 

part of the patient model. The difference between the two 

control strategies using nonlinearity compensation is that for 

one of them the states are computed using the nominal patient 

model whereas the other one uses an online estimator.  

In order to address the issue of inter- and intra- patient 

variability, each of the four controllers are first tested for the 

whole set of patients presented in Table 1 for the induction 

and the maintenance phase. The maps of the critical regions 

for the mp-MPC are presented in Figures 10 and 12. One can 

observe that for the controllers using the nonlinearity 

compensation (exact linearization) there are less critical 

regions than for the controller using local linearization. This 

will make the controllers from Case 3 and 4 easier to 

implement on embedded devices. 
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In the induction phase, for Case 1, representing the online 

EPSAC controller, we have an average settling time of 390 

seconds. The undershoot of the most sensitive patient is of 

4.6%. As it can be observed from Fig. 11, Fig. 13 and Fig. 14, 

representing the BIS response of the mp-MPC controllers, the 

three cases have very similar settling time, lower than for the 

EPSAC strategy, an average of 270 seconds. For the 

undershoot evaluation the worst case scenario is considered, 

meaning the most sensitive patient. We obtain for the first 

controller (Case 2) an undershoot of 3.7%, for Case 3 an 

undershoot of 5.8% and for Case 4 5.78%. All undershoots are 

below 10% which represents the maximum limit. For the 

induction phase it can be said that all four controllers perform 

well each of them having their own advantages: i.e. lower 

settling time, smaller undershoot. 

The controllers are tested in the maintenance phase in order 

to see how well they can deal with disturbance rejection. In 

Fig. 20 and Fig. 22 we can observe the four controllers 

response to a disturbance signal that mimics the events that 

occur in an operation theatre for PaN and for patient 9. 

All four controllers are tested against each other for the 

induction and maintenance phase for two different patients. 

The first patient is PaN, and the second patient used for 

comparison, patient 9, represents the most sensitive patient. It 

is worth mentioning that the controllers are designed using the 

values of the nominal patient which means that for this patient 

we will have the best behaviour of the controllers. As it can be 

observed from Fig. 15, Fig. 16, Fig. 20 and Fig. 21, the BIS 

response and the output for PaN in the induction phase and the 

maintenance phase respectively, the three offline controllers 

have a very similar behaviour. All the controllers present no 

undershoot and a fast settling time. The EPSAC controller has 

a less aggressive behaviour, hence, a longer settling time 

compared to the mp-MPC controllers, but as can be observed 

in the maintenance phase it will have less undershoot. In Fig. 

17, Fig. 18, Fig. 22 and Fig.23 we have the BIS response and 

the output for patient 9 in the induction phase and the 

maintenance phase. This patient represents the worst case 

scenario since it is the most sensitive patient. As we can 

observe from the figures, all four controllers have good 

performances and their responses are very close to each other. 

However, the controller from Case 2 gives the best 

performances for this patient in the induction phase 

particularly; lower undershoot, 3.7% and faster settling time, 

300 seconds. This shows that the combination between the 

linearization method based on gPROMS and optimization 

methods based on mp-MPC gives good results even without 

the nonlinearity compensation.  

It is important to state that the mp-MPC controller designed 

using the linearized patient model is the simplest version of 

the four controllers since it doesn’t use an estimator and it 

avoids using the nonlinearity compensation which introduces 

additionally complexity in the DOA control. Moreover, it 

obtains the best performances which can be explained through 

the fact that the nonlinearity of the Hill curve is more intense 

at extreme values of the BIS index and weaker around the BIS 

value of 50 where the model was linearized and where the BIS 

target is set. If the induction phase and the maintenance phase 

are kept around the value of 50%, Case 2 will give very good 

performances. But if the disturbances take the process out of 

the 50% area we can observe that the performances are not as 

good as in the case of nonlinearity compensation. Case 2 does 

not provide good performances if the disturbances are 

substantial. Due to the Hill nonlinearity the real patient model 

has smaller gain at the extreme values of the control variable. 

In the case of substantial disturbances, the control variable 

goes to the extreme values and the controller has a slower 

response but also a lower undershoot/overshoot. 

Using nonlinearity compensation is a good alternative in 

this case. Moreover, the computations required for the 

nonlinearity compensation are rather straight forward (the 

inverse of the Hill curve), and there are no recursive 

computations that might lead to accumulation of errors. 

The estimator used for the mp-MPC with nonlinearity 

compensation can also be applied for the mp-MPC using local 

linearization. It was not used for this study because as it can be 

observed from the simulations the case with nonlinearity 

compensation is more meaningful in the presence of 

disturbance. 

The aim of the studies on control of anaesthesia is to be able 

to implement the controllers on embedded devices (see 

MOBILE project). These types of devices do not have the 

same computational power as the computers where 

simulations are performed in real time. This would make 

classical MPC more difficult to implement since matrix 

operations are harder to program on embedded devices. The 

mp programming algorithms derive the explicit mapping of 

the optimal control actions as a function of the current states 

resulting in the implementation of a simple look up table and 

simple function evaluations. This makes the mp-MPC 

controllers much easier to implement for the control of depth 

of anaesthesia. 

For each patient there will be a variable dose-response 

relationship. For the same reference value, the controller sends 

different drug rate and the blood and effect-site concentrations 

levels are different for each patient. The safety limit for 

Propofol blood concentration and effect-site concentration is 

fulfilled by maintaining the drug infusion rate below 10mg/s. 

It can be observed from Fig. 16, Fig. 18, Fig. 21, Fig.23 that 

the drug infusion rates are maintained below this limit.  

Note that the robustness of the performance is analyzed by 

having the controllers designed on a nominal model [6] and 

then tested on wide set of patient models parameters where the 

impact of parameter uncertainties were analyzed. Formal 

robust criteria can also be included [27] and this represents a 

topic of our ongoing research. 

V. CONCLUSION 

In this paper we design and evaluate four different 

controllers for the regulation of depth of anaesthesia during 

induction and maintenance phase. For the maintenance phase, 

a realistic disturbance signal was considered and applied. A 

simulation study is performed on a set of 12 virtually 

generated patients plus the mean patient. The performance of 

the four controllers is compared with each other for a sensitive 

patient and the nominal patient. 
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Some important aspects of this application are the high 

inter-patient variability and the presence of important 

disturbances during the maintenance phase. The results show a 

high-efficiency, optimal dosage and robustness of the model 

predictive control algorithm to induce and maintain the 

desired Bispectral Index reference while rejecting typical 

disturbances from surgery. The multi parametric model 

predictive control approach, which is an offline optimisation 

method, has similar performances with the online method and 

promising results. 
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