332 research outputs found

    Small-Scale structure in the Galactic ISM: Implications for Galaxy Cluster Studies

    Full text link
    Observations of extragalactic objects need to be corrected for Galactic absorption and this is often accomplished by using the measured 21 cm HI column. However, within the beam of the radio telescope there are variations in the HI column that can have important effects in interpreting absorption line studies and X-ray spectra at the softest energies. We examine the HI and DIRBE/IRAS data for lines of sight out of the Galaxy, which show evidence for HI variations in of up to a factor of three in 1 degree fields. Column density enhancements would preferentially absorb soft X-rays in spatially extended objects and we find evidence for this effect in the ROSAT PSPC observations of two bright clusters of galaxies, Abell 119 and Abell 2142. For clusters of galaxies, the failure to include column density fluctuations will lead to systematically incorrect fits to the X-ray data in the sense that there will appear to be a very soft X-ray excess. This may be one cause of the soft X-ray excess in clusters, since the magnitude of the effect is comparable to the observed values.Comment: 16 pages, 9 figures, to appear in the Astrophysical Journal, vol. 597 (1 Nov 2003

    The IRAC Dark Field; Far- Infrared to X-ray Data

    Full text link
    We present 20 band photometry from the far-IR to X-ray in the Spitzer IRAC dark field. The bias for the near-IR camera on Spitzer is calibrated by observing a ~20 arcminute diameter "dark" field near the north ecliptic pole roughly every two-to-three weeks throughout the mission duration of Spitzer. The field is unique for its extreme depth, low background, high quality imaging, time-series information, and accompanying photometry including data taken with Akari, Palomar, MMT, KPNO, Hubble, and Chandra. This serendipitous survey contains the deepest mid-IR data taken to date. This dataset is well suited for studies of intermediate redshift galaxy clusters, high redshift galaxies, the first generation of stars, and the lowest mass brown dwarfs, among others. This paper provides a summary of the data characteristics and catalog generation from all bands collected to date as well as a discussion of photometric redshifts and initial and expected science results and goals. To illustrate the scientific potential of this unique dataset, we also present here IRAC color color diagrams.Comment: 12 pages, ApJS accepte

    Introducing a level-set based shape and topology optimization method for the wear of composite materials with geometric constraints

    Get PDF
    International audienceThe wear of materials continues to be a limiting factor in the lifetime and performance of mechanical systems with sliding surfaces. As the demand for low wear materials grows so does the need for models and methods to systematically optimize tribological systems. Elastic foundation models offer a simplified framework to study the wear of multimaterial composites subject to abrasive sliding. Previously, the evolving wear profile has been shown to converge to a steady-state that is characterized by a time-independent elliptic equation. In this article, the steady-state formulation is generalized and integrated with shape optimization to improve the wear performance of bi-material composites. Both macroscopic structures and periodic material microstructures are considered. Several common tribological objectives for systems undergoing wear are identified and mathematically formalized with shape derivatives. These include (i) achieving a planar wear surface from multimaterial composites and (ii) minimizing the run-in volume of material lost before steady-state wear is achieved. A level-set based topology optimization algorithm that incorporates a novel constraint on the level-set function is presented. In particular, a new scheme is developed to update material interfaces ; the scheme (i) conveniently enforces volume constraints at each iteration, (ii) controls the complexity of design features using perimeter penalization, and (iii) nucleates holes or inclusions with the topological gradient. The broad applicability of the proposed formulation for problems beyond wear is discussed, especially for problems where convenient control of the complexity of geometric features is desired

    Galaxy Clusters in the IRAC Dark Field II: Mid-IR Sources

    Full text link
    We present infrared luminosities, star formation rates, colors, morphologies, locations, and AGN properties of 24 micron-detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation and AGN evolution in cluster galaxies. We use three newly-identified z=1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep HST imaging and deep wide-area Spitzer MIPS 24 micron imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGN and the rest dominated by star formation. We find that 43 of the star forming are luminous infrared galaxies (LIRGs). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS -detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other 2 clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increases from z=0 to 1, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not effect the infrared luminosities or morphologies of the MIPS sample. Star formation happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.Comment: 18 pages, 9 figures, ApJ accepte

    The Infrared Array Camera Dark Field: Far-Infrared to X-ray Data

    Get PDF
    We present 20 band photometry from the far-IR to X-ray in the Spitzer Infrared Array Camera (IRAC) dark field. The bias for the near-IR camera on Spitzer is calibrated by observing a ~20' diameter "dark" field near the north ecliptic pole roughly every two-to-three weeks throughout the mission duration of Spitzer. The field is unique for its extreme depth, low background, high quality imaging, time-series information, and accompanying photometry including data taken with Akari, Palomar, MMT, KPNO, Hubble, and Chandra. This serendipitous survey contains the deepest mid-IR data taken to date. This data set is well suited for studies of intermediate-redshift galaxy clusters, high-redshift galaxies, the first generation of stars, and the lowest mass brown dwarfs, among others. This paper provides a summary of the data characteristics and catalog generation from all bands collected to date as well as a discussion of photometric redshifts and initial and expected science results and goals. To illustrate the scientific potential of this unique data set, we also present here IRAC color-color diagrams

    The Kinematics of Intracluster Planetary Nebulae and the On-Going Subcluster Merger in the Coma Cluster Core

    Full text link
    The Coma cluster is the richest and most compact of the nearby clusters, yet there is growing evidence that its formation is still on-going. With a new multi-slit imaging spectroscopy technique pioneered at the 8.2 m Subaru telescope and FOCAS, we have detected and measured the line-of-sight velocities of 37 intracluster planetary nebulae associated with the diffuse stellar population of stars in the Coma cluster core, at 100 Mpc distance. We detect clear velocity substructures within a 6 arcmin diameter field. A substructure is present at ~5000 km/s, probably from in-fall of a galaxy group, while the main intracluster stellar component is centered around ~6500 km/s, ~700 km/s offset from the nearby cD galaxy NGC 4874. The kinematics and morphology of the intracluster stars show that the cluster core is in a highly dynamically evolving state. In combination with galaxy redshift and X-ray data this argues strongly that the cluster is currently in the midst of a subcluster merger, where the NGC 4874 subcluster core may still be self-bound, while the NGC 4889 subcluster core has probably dissolved. The NGC 4889 subcluster is likely to have fallen into Coma from the eastern A2199 filament, in a direction nearly in the plane of the sky, meeting the NGC 4874 subcluster arriving from the west. The two inner subcluster cores are presently beyond their first and second close passage, during which the elongated distribution of diffuse light has been created. We predict the kinematic signature expected in this scenario, and argue that the extended western X-ray arc recently discovered traces the arc shock generated by the collision between the two subcluster gas halos. Any preexisting cooling core region would have been heated by the subcluster collision.Comment: Astronomy & Astrophysics, in press, 9 pages, 5 figure

    BAMBI Is Expressed in Endothelial Cells and Is Regulated by Lysosomal/Autolysosomal Degradation

    Get PDF
    BACKGROUND: BAMBI (BMP and Activin Membrane Bound Inhibitor) is considered to influence TGFβ and Wnt signaling, and thereby fibrosis. Surprisingly data on cell type-specific expression of BAMBI are not available. We therefore examined the localization, gene regulation, and protein turnover of BAMBI in kidneys. METHODOLOGY/PRINCIPAL FINDINGS: By immunofluorescence microscopy and by mRNA expression, BAMBI is restricted to endothelial cells of the glomerular and some peritubular capillaries and of arteries and veins in both murine and human kidneys. TGFβ upregulated mRNA of BAMBI in murine glomerular endothelial cells (mGEC). LPS did not downregulate mRNA for BAMBI in mGEC or in HUVECs. BAMBI mRNA had a half-life of only 60 minutes and was stabilized by cycloheximide, indicating post-transcriptional regulation due to AU-rich elements, which we identified in the 3' untranslated sequence of both the human and murine BAMBI gene. BAMBI protein turnover was studied in HUVECs with BAMBI overexpression using a lentiviral system. Serum starvation as an inducer of autophagy caused marked BAMBI degradation, which could be totally prevented by inhibition of lysosomal and autolysosomal degradation with bafilomycin, and partially by inhibition of autophagy with 3-methyladenine, but not by proteasomal inhibitors. Rapamycin activates autophagy by inhibiting TOR, and resulted in BAMBI protein degradation. Both serum starvation and rapamycin increased the conversion of the autophagy marker LC3 from LC3-I to LC3-II and also enhanced co-staining for BAMBI and LC3 in autolysosomal vesicles. CONCLUSIONS/SIGNIFICANCE: 1. BAMBI localizes to endothelial cells in the kidney and to HUVECs. 2. BAMBI mRNA is regulated by post-transcriptional mechanisms. 3. BAMBI protein is regulated by lysosomal and autolysosomal degradation. The endothelial localization and the quick turnover of BAMBI may indicate novel, yet to be defined functions of this modulator for TGFβ and Wnt protein actions in the renal vascular endothelium in health and disease
    • …
    corecore