645 research outputs found

    XMM-Newton Observations of the Be/X-ray transient A0538-66 in quiescence

    Full text link
    We present XMM-Newton observations of the recurrent Be/X-ray transient A0538-66, situated in the Large Magellanic Cloud, in the quiescent state. Despite a very low luminosity state of (5-8)E33 ergs/s in the range 0.3-10 keV, the source is clearly detected up to ~8 keV. and can be fitted using either a power law with photon index alpha=1.9+-0.3 or a bremsstrahlung spectrum with kT=3.9+3.9-1.7 keV. The spectral analysis confirms that the off-state spectrum is hard without requiring any soft component, contrary to the majority of neutron stars observed in quiescence up to now.Comment: Accepted for proceedings of 5th INTEGRAL Worksho

    RX J0440.9+4431: a persistent Be/X-ray binary in outburst

    Get PDF
    The persistent Be/X-ray binary RX J0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities Swift, RXTE, XMM-Newton, and INTEGRAL. We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity and the dynamical properties of the system. We have determined the orbital period from the long-term Swift/BAT light curve, but our determinations of the spin period are not precise enough to constrain any orbital solution. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~2e36 erg/s. The luminosity dependency of the size of the black body emission region is found to be rBBLX0.39±0.02r_{BB} \propto L_X^{0.39\pm0.02}. This suggests that either matter accreting onto the neutron star hosted in RX J0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the structure of the neutron star magnetic field is more complicated than a simple dipole close to the surfaceComment: Accepted for publication by A&

    Probing large-scale wind structures in Vela X-1 using off-states with INTEGRAL

    Get PDF
    Vela X-1 is the prototype of the class of wind-fed accreting pulsars in high mass X-ray binaries hosting a supergiant donor. We have analyzed in a systematic way ten years of INTEGRAL data of Vela X-1 (22-50 keV) and we found that when outside the X-ray eclipse, the source undergoes several luminosity drops where the hard X-rays luminosity goes below 3x10^35 erg/s, becoming undetected by INTEGRAL. These drops in the X-ray flux are usually referred to as "off-states" in the literature. We have investigated the distribution of these off-states along the Vela X-1 ~8.9 d orbit, finding that their orbital occurrence displays an asymmetric distribution, with a higher probability to observe an off-state near the pre-eclipse than during the post-eclipse. This asymmetry can be explained by scattering of hard X-rays in a region of ionized wind, able to reduce the source hard X-ray brightness preferentially near eclipse ingress. We associate this ionized large-scale wind structure with the photoionization wake produced by the interaction of the supergiant wind with the X-ray emission from the neutron star. We emphasize that this observational result could be obtained thanks to the accumulation of a decade of INTEGRAL data, with observations covering the whole orbit several times, allowing us to detect an asymmetric pattern in the orbital distribution of off-states in Vela X-1.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society (5 pages, 3 figures). A few typos fixed to match the published versio

    Investigation of the energy dependence of the orbital light curve in LS 5039

    Full text link
    LS 5039 is so far the best studied γ\gamma-ray binary system at multi-wavelength energies. A time resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing \textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ\gamma-ray band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data between 30 MeV and 10 GeV in 5 different energy bands. We found that, at \lesssim100 MeV and \gtrsim1 TeV the peak of the γ\gamma-ray emission is near orbital phase 0.7, while between \sim100 MeV and \sim1 GeV it moves close to orbital phase 1.0 in an orbital anti-clockwise manner. This result suggests that the transition region in the SED at soft γ\gamma-rays (below a hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to the one of 0.0--0.5, when the compact object is "behind" its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although \textit{Fermi}-LAT significantly (\sim18σ\sigma) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC, orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase \sim0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    Disappearing Pulses in Vela X-1

    Get PDF
    We present results from a 20 h RXTE observation of Vela X-1, ncluding a peculiar low state of a few hours duration, during which the pulsation of the X-ray emission ceased, while significant non-pulsed emission remained. This ``quiescent state'' was preceded by a ``normal state'' without any unusual signs and followed by a ``high state'' of several hours of increased activity with strong, flaring pulsations. while there is clear spectral evolution from the normal state to the low state, the spectra of the following high state are surprisingly similar to those of the low state.Comment: 5 pages, 5 figures, Proceedings of the 5th Compton Symposium, AIP, in pres

    Variability in high-mass X-ray binaries

    Get PDF
    Strongly magnetized, accreting neutron stars show periodic and aperiodic variability over a wide range of time scales. By obtaining spectral and timing information on these different time scales, we can have a closer look into the physics of accretion close to the neutron star and the properties of the accreted material. One of the most prominent time scales is the strong pulsation, i.e., the rotation period of the neutron star itself. Over one rotation, our view of the accretion column and the X-ray producing region changes significantly. This allows us to sample different physical conditions within the column but at the same time requires that we have viewing-angle-resolved models to properly describe them. In wind-fed high-mass X-ray binaries, the main source of aperiodic variability is the clumpy stellar wind, which leads to changes in the accretion rate (i.e., luminosity) as well as absorption column. This variability allows us to study the behavior of the accretion column as a function of luminosity, as well as to investigate the structure and physical properties of the wind, which we can compare to winds in isolated stars.Comment: 6 pages, 4 figures, accepted for publication in Astronomische Nachrichten (proceedings of the XMM-Newton Workshop 2019
    corecore