10,885 research outputs found

    Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    Get PDF
    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength

    Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform

    Get PDF
    This paper is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. Here we study the Stäckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different spaces. Through the use of this tool we derive and classify for the first time all two-dimensional (2D) superintegrable systems. The underlying spaces are exactly those derived by Koenigs in his remarkable paper giving all 2D manifolds (with zero potential) that admit at least three second order symmetries. Our derivation is very simple and quite distinct. We also show that every superintegrable system is the Stäckel transform of a superintegrable system on a constant curvature space

    Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems

    Get PDF
    This paper is the conclusion of a series that lays the groundwork for a structure and classification theory of second-order superintegrable systems, both classical and quantum, in conformally flat spaces. For two-dimensional and for conformally flat three-dimensional spaces with nondegenerate potentials we have worked out the structure of the classical systems and shown that the quadratic algebra always closes at order 6. Here we describe the quantum analogs of these results. We show that, for nondegenerate potentials, each classical system has a unique quantum extension. We also correct an error in an earlier paper in the series (that does not alter the structure results) and we elucidate the distinction between superintegrable systems with bases of functionally linearly independent and functionally linearly dependent symmetries

    Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory

    Get PDF
    This paper is part of a series that lays the groundwork for a structure and classification theory of second-order superintegrable systems, both classical and quantum, in real or complex conformally flat spaces. Here we consider classical superintegrable systems with nondegenerate potentials in three dimensions. We show that there exists a standard structure for such systems, based on the algebra of 3×3 symmetric matrices, and that the quadratic algebra always closes at order 6. We show that the spaces of truly second-, third-, fourth-, and sixth-order constants of the motion are of dimension 6, 4, 21, and 56, respectively, and we construct explicit bases for the fourth- and sixth order constants in terms of products of the second order constants

    Tools for Verifying Classical and Quantum Superintegrability

    Get PDF
    Recently many new classes of integrable systems in n dimensions occurring in classical and quantum mechanics have been shown to admit a functionally independent set of 2n-1 symmetries polynomial in the canonical momenta, so that they are in fact superintegrable. These newly discovered systems are all separable in some coordinate system and, typically, they depend on one or more parameters in such a way that the system is superintegrable exactly when some of the parameters are rational numbers. Most of the constructions to date are for n=2 but cases where n>2 are multiplying rapidly. In this article we organize a large class of such systems, many new, and emphasize the underlying mechanisms which enable this phenomena to occur and to prove superintegrability. In addition to proofs of classical superintegrability we show that the 2D caged anisotropic oscillator and a Stackel transformed version on the 2-sheet hyperboloid are quantum superintegrable for all rational relative frequencies, and that a deformed 2D Kepler-Coulomb system is quantum superintegrable for all rational values of a parameter k in the potential

    Nondegenerate 3D complex Euclidean superintegrable systems and algebraic varieties

    Full text link
    A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n-1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multi-separability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schroedinger operator, deep connections with special functions and with QES systems. Here we announce a complete classification of nondegenerate (i.e., 4-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in 10 variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly 10 nondegenerate potentials.Comment: 35 page

    Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties

    Get PDF
    A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n−1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multiseparability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schrödinger operator, deep connections with special functions, and with quasiexactly solvable systems. Here, we announce a complete classification of nondegenerate (i.e., four-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in ten variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly ten nondegenerate potentials. ©2007 American Institute of Physic

    Semiotic work in the science classroom

    Get PDF
    This review is on Lilian Pozzer and Wolff-Michael Roth’s “A cultural-historical perspective on the multimodal development of concepts in science lectures.” We offer some brief observations from within the paradigm of social semiotics, more specifically from our own attempts to produce multimodal accounts of learning in and beyond the classroom. We propose to treat meaning as the outcome of social action and interaction: clearly, environments and practices of learning and teaching come within that frame. We comment on the categories and implicit distinctions of verbal vs nonverbal, and the relative visibility and invisibility of meaning makers (teacher and learner) and their use of semiotic resources in accounts of learning. We highlight the agency of learners and propose a transformation of the role of “teacher” into that of “designer (of learning environments)”. We conclude by briefly speculating on the possibility of bringing the two distinct paradigms into dialogue and conjunction
    corecore