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This paper is the conclusion of a series that lays the groundwork for a structure and
classification theory of second-order superintegrable systems, both classical and
quantum, in conformally flat spaces. For two-dimensional and for conformally flat
three-dimensional spaces with nondegenerate potentials we have worked out the
structure of the classical systems and shown that the quadratic algebra always
closes at order 6. Here we describe the quantum analogs of these results. We show
that, for nondegenerate potentials, each classical system has a unique quantum
extension. We also correct an error in an earlier paper in the series �that does not
alter the structure results� and we elucidate the distinction between superintegrable
systems with bases of functionally linearly independent and functionally linearly
dependent symmetries. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2337849�

. INTRODUCTION

This is the conclusion of a series1–4 whose purpose is to lay the groundwork for a structure
nd classification theory of second-order superintegrable systems, both classical and quantum, in
omplex conformally flat spaces. Real spaces are considered as restrictions of these to the various
eal forms. In Refs. 1 and 3 we have given examples in two and three dimensions �2D and 3D�,
escribed the background as well as the interest and importance of these systems in mathematical
hysics, and given dozens of relevant references. Observed features of the systems are multisepa-
ability, closure of the quadratic algebra of second-order symmetries at order 6, use of represen-
ation theory of the quadratic algebra to derive spectral properties of the quantum Schrödinger
perator, and a close relationship with exactly solvable and quasi-exactly solvable problems.5 Our
pproach is, rather than focus on particular spaces and systems, to use a general theoretical method
ased on integrability conditions to derive structure common to all systems.

We recall some basic facts and results about conformally flat superintegrable systems. An
-dimensional complex Riemannian space is conformally flat if and only if it admits a set of local
oordinates x1 , . . . ,xn such that the contravariant metric tensor takes the form gij =�ij /��x�. A
lassical superintegrable system H=�ijg

ijpipj +V�x� on the phase space of this manifold is one
hat admits 2n−1 functionally independent generalized symmetries �or constants of the motion�
k, k=1, . . . ,2n−1 with S1=H where the Sk are polynomials in the momenta pj.

6–11 It is easy to
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ee that 2n−1 is the maximum possible number of functionally independent symmetries and,
ocally, such �in general nonpolynomial� symmetries always exist. The system is second-order
uperintegrable if the 2n−1 functionally independent symmetries can be chosen to be quadratic in
he momenta. Second-order superintegrable systems, though complicated, are tractable because
tandard orthogonal separation of variables techniques are associated with second-order symme-
ries, e.g., Refs. 12–17, and these techniques can be brought to bear. Thus we concentrate on
econd-order superintegrable systems in which the symmetries take the form S=�aij�x�pipj

W�x�, quadratic in the momenta.
There is an analogous definition for second-order quantum superintegrable systems with

chrödinger operator

H = � + V�x�, � =
1
�g

�
ij

�xi
��ggij��xj

,

he Laplace-Beltrami operator plus a potential function.12 Here there are 2n−1 second-order
ymmetry operators

Sk =
1
�g

�
ij

�xi
��ga�k�

ij ��xj
+ W�k��x�, k = 1, . . . ,2n − 1

ith S1=H and �H ,Sk��HSk−SkH=0. Again multiseparable systems yield many examples of
uperintegrability.

The structure theory for classical second-order superintegrable systems with nondegenerate
otential for 2D spaces and for 3D conformally flat spaces has been worked out recently.1–4,18

This paper depends heavily on the results and methods of those papers and we shall refer to them
epeatedly.� Each such system has quadratic algebra structure. Let �S j	 be a basis for the second-
rder constants of the motion for the Hamiltonian H. By the superintegrability assumption, the
oisson brackets �Si ,S j	 must be functionally dependent on the basis symmetries Sk, as are
�Si ,S j	 ,Sh	 and ��Si ,S j	 , �Sh ,Ss		. For these systems it is always true that the squares �Si ,S j	2

nd products �Si ,S j	�Sk ,S�	 as well as ��Si ,S j	 ,Sh	 and ��Si ,S j	 , �Sh ,Ss		 are always uniquely
xpressible as polynomials in the �Sk	. This remarkable closure of the algebra generated by the
econd-order symmetries leads to the very special properties enjoyed by the classical superinte-
rable systems.

Observed common features of the quantum analogs of these systems are that they are usually
ultiseparable and that the eigenfunctions of one separable system can be expanded in terms of

he eigenfunctions of another. This is the source of nontrivial special function expansion theorems
n the quantum case.19 The quantum symmetry operators are in formal self-adjoint form and
uitable for spectral analysis. Also, the quadratic algebra identities allow us to relate eigenbases
nd eigenvalues of one symmetry operator to those of another. The representation theory of the
bstract quadratic algebra can be used to derive spectral properties of the second-order generators
n a manner analogous to the use of Lie algebra representation theory to derive spectral properties
f quantum systems that admit Lie symmetry algebras.19–22

The structure theory of classical superintegrable systems is simpler than for the quantum case,
nd we studied it first. However, we now show that each of the classical superintegrable systems
ith nondegenerate potential has a unique extension to a quantum superintegrable system.

We review, briefly, some basic definitions and notation in the classical 3D case; the corre-
ponding 2D definitions can be obtained by obvious restriction. For a classical 3D system on a
onformally flat space �note that all 2D spaces are conformally flat� we can always choose local
oordinates x ,y ,z, not unique, such that the Hamiltonian takes the form H= �p1

2+ p2
2

p3
2� /��x ,y ,z�+V�x ,y ,z�. This system is second-order superintegrable with nondegenerate po-

ential V=V�x ,y ,z ,� ,� ,� ,�� if it admits five functionally independent quadratic constants of the

otion �i.e., generalized symmetries�
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Sk = �
ij

a�k�
ij pipj + W�k��x,y,�,�,�� . �1�

s described in Ref. 3, the potential V is nondegenerate if it satisfies a system of coupled PDEs
f the form

V22 = V11 + A22�x,y,z�V1 + B22�x,y,z�V2 + C22�x,y,z�V3,

V33 = V11 + A33�x,y,z�V1 + B33�x,y,z�V2 + C33�x,y,z�V3,

V12 = A12�x,y,z�V1 + B12�x,y,z�V2 + C12�x,y,z�V3,

V13 = A13�x,y,z�V1 + B13�x,y,z�V2 + C13�x,y,z�V3,

V23 = A23�x,y,z�V1 + B23�x,y,z�V2 + C23�x,y,z�V3, �2�

hose integrability conditions are satisfied identically. Here, V1=�V /�x, V2=�V /�y, etc. The
nalytic functions Aij ,Bij ,Cij are determined uniquely from the Bertrand-Darboux equations for
he five constants of the motion �under the assumption that the quadratic constants of the motion
re functionally linearly independent� and are analytic except for a finite number of poles. At any
egular point x0= �x0 ,y0 ,z0�, i.e., a point where the Aij ,Bij ,Cij are defined and analytic and the
onstants of the motion are functionally independent, we can prescribe the values of V�x0�, V1�x0�,
2�x0�, V3�x0�, V11�x0� arbitrarily and obtain a unique solution of �2�. The significance of the four
arameters for a nondegenerate potential �in addition to the usual additive constant� is that it is the
aximum dimension of the space of solutions to the Bertrand-Darboux equations that can appear

n a superintegrable system with functionally linearly independent symmetries. If the number of
arameters is fewer than four, we say that the superintegrable potential is degenerate.

We clarify our definition of nondegenerate potential and our parameter count by considering
he generalized Calogero potential

V�1� =
a

�x − y�2 +
b

�y − z�2 +
c

�z − x�2 , �3�

nd its further generalization

V�2� =
a

�m1x − m2y�2 +
b

�m2y − m3z�2 +
c

�m3z − m1x�2 , �4�

here mi�0, see Refs. 11 and 23–25. These potentials are superintegrable on Euclidean space and
he second contains six parameters, which exceeds the count of four for nondegenerate superin-
egrable systems. How can this be?

Our definition of the number of parameters in a superintegrable system is that it is the
imension of the space of solutions of the set of Bertrand-Darboux equations for this system
ignoring the trivial added constant�. Let us consider the system of symmetries defining the system
ith potential V�1�. A basis for the space of symmetries is �using Px= p1 , Py = p2 , Pz= p3 ,J1=yp3

zp2 ,J2=zp1−xp3 ,J3=xp2−yp1�,

S1 = H = Px
2 + Py

2 + Pz
2 + V1, S2 = �Px + Py + Pz�2, S3 = J1

2 + J2
2 + J3

2 + W3,

S4 = Px�J2 − J3� + Py�J3 − J1� + Pz�J1 − J2� + W4, S5 = J3J2 + J1J3 + J2J1 + W5,

here the potential terms Wi contain the parameters.
We can write the Bertrand-Darboux equations for each symmetry S=�ajkpjpk+W of H
2 2 3
�p1+ p2+ p3� /��x�+V in the matrix form
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0 = 
 0 a12 a11 − a22 a31 − a32

a13 0 − a23 a21 a11 − a33

a32 − a32 − a13 a22 − a33 a12 �

V33 − V11

V22 − V11

V12

V32

V31

� −
1

�
��a12�1 − ��a11�2

��a31�1 − ��a11�3

��a31�2 − ��a21�3
�V1

−
1

�
��a22�1 − ��a21�2

��a32�1 − ��a12�3

��a32�2 − ��a22�3
�V2 −

1

�
��a32�1 − ��a31�2

��a33�1 − ��a13�3

��a33�2 − ��a23�3
�V3. �5�

n the Euclidean case, �=1. Evaluating these equations for potential V�1� we find that they are

V1 + V2 + V3 = 0, �x − y�V12 + �z − y�V23 − V1 + 2V2 − V3 = 0,

�x − z�V13 + �y − z�V23 − V1 − V2 + 2V3 = 0, �6�

nd their differential consequences. The complete system of equations is in involution and a
articular solution is determined unquely by choosing V2 ,V3 ,V23 at a regular point. Thus we have
three parameter potential. The apparent six parameter potential V�2� is actually three parameter

y our count, because the mi are parametrizing a family of defining symmetries S�m1 ,m2 ,m3�, i.e.,
he Bertrand-Darboux equations themselves are functions of the m1. For example, the symmetry

2 is replaced by S2�m1 ,m2 ,m3�= �Px /m1+ Py /m2+ Pz /m3�2. Another way to see this is to note that
he potentials V�2� do not form a vector space. For each fixed value of the mi, i.e., for each fixed
hoice of the space of defining quadratic symmetries, we have a three parameter potential.

What is important to notice here is the occurrence of the first-order condition V1+V2+V3=0
or the potential as a consequence of the Bertrand-Darboux equations. Thus the potential is a
unction of only two variables, impossible for nondegenerate potentials. To understand this, ob-
erve the relation

�x + y + z�2Ŝ1 − �x2 + y2 + x2�Ŝ2 + 2Ŝ3 − 2�x + y + z�Ŝ4 − 2Ŝ5 = 0

beyed by the purely quadratic terms in the symmetries, i.e., where we have set Si= Ŝi+Wi. This
eans that the five functionally independent symmetries Si are functionally linearly dependent.
his dependence reduces the rank of second derivative terms in the system of 12 Bertrand-
arboux equations so that we do not obtain the canonical form �2� which is required for nonde-
eneracy. As shown in Ref. 3, if we have a 3D superintegrable system with a basis of functionally
inear independent symmetries, then we always obtain the canonical system �2� and its differential
onsequences.

Functional linear dependence of a functionally independent maximal set of symmetries is hard
o achieve. In 2D it is well known that essentially, there is only one example, corresponding to Lie
orm. In 3D Theorem 1 of Ref. 3 stated, incorrectly, that all functionally independent superinte-
rable systems were functionally linearly independent. The Calogero potential is a counterexam-
le. Thus the results of papers Refs. 3 and 4 hold under the explicit assumption that the function-
lly independent basis of symmetries is also functionally linearly independent. This is exactly the
ame situation as in the 2D case.1

For the following result the system need not be superintegrable.
Theorem 1: Let the functionally independent set �H=S1 ,S2 , . . . ,St	, �t�2� be a functionally

inearly dependent basis of second-order symmetries for the system H= �p1
2+ p2

2+ p3
3� /��x�+V with

ontrivial potential V, i.e., there is a relation �hc�h��x�Ŝh�0 in an open set, where not all c�h�

�x� are constants, and no such relation holds for the c�h� all constant, except if the constants are

ll zero. (Here Si= Ŝ+Wi where the Wi are the potential terms.) Then the potential must satisfy a
rst-order relation AV1+BV2+CV3=0 where not all of the functions A ,B ,C are zero.
Proof: By relabeling, we can express one of the quadratic parts of the constants of the motion
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ˆ
0 as a linear combination of a functionally independent subset �Ŝ1 , . . . , Ŝr ,1	r	4	: Ŝ0

��=1
r c����x�Ŝ�. Taking the Poisson bracket of both sides of this equation with �p1

2+ p2
2+ p3

3� /� and
sing the fact that each of the Sh is a constant of the motion, we obtain the identity

�
�=1

r

�
i,j=1

3

��xk
c����a���

ij pipjpk = 0, �7�

here �x ,y ,z���x1 ,x2 ,x3�. It is straightforward to check that this identity can be satisfied if and
nly if the functions

ck
ij = �

�=1

r

��xk
c����a���

ij , 1 	 i, j,k 	 3

atisfy

ci
ii = 0, cj

ii + 2ci
ij = 0, �i � j�, c3

12 + c1
23 + c2

31 = 0. �8�

ote that ck
ij =ck

ji. Corresponding to each of the basis symmetries Sh there is a linear set Ch=0 of
ertrand-Darboux equations �5�. A straightforward substitution into the identity C0−��=1

r c���

�x�C�=0 yields the relation


c1
12 − c2

11

c1
31 − c3

11

c2
31 − c3

21�V1 + 
c1
22 − c2

21

c1
32 − c3

12

c2
32 − c3

22�V2 + 
c1
32 − c2

31

c1
33 − c3

13

c2
33 − c3

23�V3 = 0.

hese first-order differential equations for the potential cannot all vanish identically. Indeed if they
id all vanish then we would have the conditions

c1
12 = c2

11, c1
31 = c3

11, c2
31 = c3

21, c1
22 = c2

21, c1
32 = c3

12,

c2
32 = c3

22, c1
32 = c2

31, c1
33 = c3

13, c2
33 = c3

23.

hese conditions, together with conditions �8�, show that ci
jk=0 for all i , j ,k. Thus we have

�=1
r ��xk

c����a���
ij =0, 1	 i , j ,k	3. Since the set �Ŝ1 , . . . , Ŝr	, is functionally linearly independent,

e have �xk
c����0 for 1	k	3,1	�	r. Hence the c��� are constants, which means that Ŝ0

��=1
r c���Ŝ�=0. Thus the set �S0 , . . . ,S4	 is functionally dependent. This is a contradiction.

Q.E.D.
This shows that the potential function for any system, superintegrable or not, with a basis of

ymmetries that is functionally linearly dependent must satisfy at least one nontrivial first-order
artial differential equation AV1+BV2+CV3=0 where the functions A ,B ,C are parameter free.
he method of proof of the Theorem shows how to find such equations. This means that all such
otentials depend on either one or two coordinates. The 3D nondegenerate potentials that are the
rimary subject of this series depend essentially on all three coordinates.

I. NONDEGENERATE 2D QUANTUM SYSTEMS

Here we discuss how the analysis of classical 2D superintegrable systems with nondegenerate
otentials carries over to the quantum case. The quantization is much simpler in the 2D case than
or dimensions greater than two. For a manifold with metric ds2=��x ,y��dx2+dy2� the Hamil-
onian system H= �p1

2+ p2
2� /��x ,y�+V�x ,y� is replaced by the Hamiltonian �Schrödinger� operator
ith potential
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H =
1

��x,y�
��11 + �22� + V�x,y� �9�

n local orthogonal coordinates. A second-order symmetry of the Hamiltonian system S
�k,j=1

2 akj�x ,y�pkpj +W�x ,y�, with akj =ajk, corresponds to the operator

S =
1

��x,y� �
k,j=1

2

�k�akj�x,y���x,y�� j� + W�x,y�, akj = ajk.

hese operators are formally self-adjoint with respect to the bilinear product

�f ,g =� f�x,y�g�x,y���x,y�dxdy

n the manifold, i.e.,

�f ,Hg = �Hf ,g, �f ,Sg = �Sf ,g

or all local C
 functions f ,g with compact support on the manifold, where we set all boundary
erms equal to 0.

A first-order symmetry of the Hamiltonian system L=�k=1
2 ak�x ,y�pk corresponds to the op-

rator

L = �
k=1

2

ak�x,y��k.

t is easy to show that L1 is formally skew-adjoint, i.e.,

�f ,Lg = − �Lf ,g .

The following results that relate the operator commutator �A ,B�=AB−BA and the Poisson
racket are straightforward to verify.

Lemma 1:

�H,S	 = 0 Û �H,S� = 0.

his result is not generally true for higher dimensional manifolds.
Lemma 2:

�H,L	 = 0 Û �H,L� = 0.

The definition of a nondegenerate potential V�x ,y� is identical with that for the classical case,
.e., it obeys

V22 = V11 + A22V1 + B22V2,

V12 = A12V1 + B12V2 �10�

gain, V1 ,V2 ,V11 can be prescribed arbitrarily at a fixed regular point. Note that if V is a nonde-
enerate potential then there will be no first-order symmetries.

It follows from Lemma 1 that the classical results for the space of second-order symmetries
orresponding to a nondegenerate potential can be taken over without change. The space is three
imensional and at any regular point x0 there exists exactly one symmetry, up to an additive
onstant, such that ajk�x0�=� jk for any constant symmetric matrix �.

Now we investigate the space of third-order symmetries, i.e., third-order differential operators
that commute with the Hamiltonian: �H ,K�=0. In general, determination of the possible opera-
ors K is very difficult, but in this case, simplifications make the problem tractable:
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1. We are interested, principally, in the space of third-order symmetries that is spanned by the
ommutators of second-order symmetries S. Since the second-order symmetries are formally self-
djoint, the commutators will be skew-adjoint. Thus we can limit ourselves to K that are skew
djoint.

2. A second reason for considering only skew adjoint K follows from the well-known unique
ecomposition of a symmetry into a formally skew-adjoint part and a formally self-adjoint part,
ach of which must itself be a symmetry. Clearly the self-adjoint part of a third-order symmetry
ust be at most a second-order symmetry, i.e., the third-order terms vanish. For a nondegenerate

uperintegrable system we already know the three-dimensional space of these second-order sym-
etries.

3. Since H encodes a three-parameter family of potentials, the symmetry K must also be a
unction of the parameters. The highest order terms akji�kji in K �symmetric in k , j , i� will be
ndependent of the parameters but lower order terms may have linear parameter dependence.

4. The skew-adjoint requirement uniquely determines the coefficients of the second-order
erms in K. They are

3

2�
�akji��i�kj .

5. Further, the skew-adjoint requirement means that there exist functions akji , b̃i such that K
as the unique representation

K = �
k,j,i=1

2 �akji�kji +
3

2�
�akji��i�kj +

1

2�
�akji��kj�i� + �

i=1

2 �b̃i�i +
1

2�
�b̃i��i� , �11�

here the functions b̃i�x ,y ,z� contain the parameter dependence.
6. Equating coefficients of the fourth-order terms in the operator condition �H ,K�=0 where K

s given by �11� we obtain the relations

2
�aiii

�xi
= − 3� � ln �

�xi

aiii +
� ln �

�xj
ajii�, i � j ,

3
�ajii

�xi
+

�aiii

�xj
= 3�−

� ln �

�xi

aiij −
� ln �

�xj

aijj�, i � j ,

2� �a122

�x1
+

�a112

�x2
� = −

� ln �

�x1

a122 −
� ln �

�x1

a111 −
� ln �

�x2

a222 −
� ln �

�x2

a112, �12�

hich are just the requirements that the akji be the components of a third-order Killing tensor.
7. Equating coefficients of the third-order terms in the condition �H ,K�=0 we obtain relations

hat are consequences of the Killing tensor relations �12�.
8. The remaining conditions on K intertwine �, akji, b̃i, and V, and are complicated. Rather

han solve them directly, we note that we can make the unique decomposition

b̃i�x1,x2,Vx1
,Vx2

� = ci�x1,x2� + bi�x1,x2,Vx1
,Vx2

� ,
here
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bi = �
j=1

2

f�,j�x1,x2�
�V

�xj
�x1,x2� , �13�

.e., we can split off the parameter-dependent terms of b̃i from the rest. Then, equating the linear
arameter-dependent coefficients of the second-order terms in the symmetry operator condition,
e obtain the requirements

�b1

�x2
+

�b2

�x1
= 3�

s=1

2

�as21 �V

�xs
,

�bj

�xj
=

3

2�
s=1

2

asjj �V

�xs
−

1

2�
s=1

2
� ln �

�xs
bs, j = 1,2, �14�

dentical to the corresponding classical equations in Ref. 1. Equating the quadratic parameter-
ependent coefficients of the zeroth-order terms in the symmetry operator condition, we obtain the
equirement

�
s=1

2

bs �V

�xs
= 0, �15�

gain identical to the corresponding classical equation in Ref. 1.
9. Conditions �14� and �15�, and third-order Killing tensor conditions are clearly necessary for

to be a skew-adjoint symmetry. To see that they are sufficient will take several steps.
10. Uniqueness: Suppose K ,K� are two third-order skew-adjoint symmetries with the same

unctions akji ,bi �but possibly different ci�. Note that K−K� is a skew-adjoint, parameter-
ndependent symmetry that is first order �since the third- and second-order terms in K and K� are
he same�. However, there can be no nonzero parameter-independent symmetry for a nondegen-
rate superintegrable system. Therefore K=K�. Though we have not given an explicit expression
or the ci we see that they are uniquely determined by the functions akji ,bi.

11. Existence: This also involves several steps. We first employ the results of our construction
f third-order symmetries for the classical case. There we used �13� to show

f�,j + f j,� = 0, 1 	 �, j 	 2,

nd �14� to show that

b1
1 = f1

1,2V2 + f1,2V12, b2
1 = f2

1,2V2 + f1,2V22,

b1
2 = f1

2,1V1 + f2,1V11, b2
2 = f2

2,1V1 + f2,1V12,

nd

�a111 = 1
3 f1,2�2A12 − �ln ��2�, �a222 = 1

3 f1,2�− 2B12 + �ln ��1� ,

�a112 = 1
9 f1,2�2A22 + 2B12 + �ln ��1� ,

�a122 = 1
9 f1,2�− 2A12 + 2B22 − �ln ��2� ,

f1
1,2 = 1

3 f1,2�A22 − 2B12 − �ln ��1�, f2
1,2 = 1

3 f1,2�− 2A12 − B22 + �ln ��2� .

hus the aijk can be expressed in terms of f1,2 and the Ak� ,Bk� functions, and we have an
1,2
nvolutive system for f . Thus any third symmetry is uniquely determined by the constant
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f1,2�x0 ,y0� at some regular point �x0 ,y0�. This means that the space of third-order skew-adjoint
ymmetries is at most one dimensional.

12. Consider the case where all aijk�0. Then 2A12=B22= �ln ��2, 2B12=−A22= �ln ��1. The
ntegrability conditions require �ln ��11+ �ln ��22=0, which is the condition for flat space, Thus by
n appropriate orthogonal change of coordinates we can assume that ��1. In these new coordi-
ates we see that Aij =Bij �0 for all i , j. The general solution is

f1,2 = c1,

here c1, is a constant. This is the homogeneous isotropic oscillator:

V�x,y� = �x + �y + ��x2 + y2� .

ne can easily check that for this very special case a nonzero commutator of two second-order
ymmetries is first order, parameter-dependent.

13. The second case is that not all aijk vanish. We show that the space of symmetries is exactly
ne dimensional. Let

S1 =
1

�
� �k��a�1�

kj ��� j� + W�1�, S2 = � �k�a�2�
kj �� j� + W�2�

e second-order symmetries and let A�i��x1 ,x2�= �a�i�
kj �x1 ,x2�	, i=1,2 be 2�2 matrix functions.

hen the commutator �S1 ,S2� of these symmetries is a third-order symmetry K with akji and fk,�

uch that

fk,� = 2��
j

�a�2�
kj a�1�

j� − a�1�
kj a�2�

j� � .

hus K= �S1 ,S2� is uniquely determined by the skew-symmetric matrix

�A�2�,A�1�� � A�2�A�1� − A�1�A�2�,

ence by the constant matrix �A�2��x0 ,y0� ,A�1��x0 ,y0�� evaluated at a regular point.
Theorem 2: Let K be a third-order skew-adjoint symmetry (11) for a superintegrable system

ith nondegenerate potential V and b̃i=ci�x ,y�+bi�x ,y ,V1 ,V2� where

bi = �
j=1

2

f i,j�x,y�
�V

�xj
�x,y� .

hen

f�,j + f j,� = 0, 1 	 �, j 	 2

nd K is uniquely determined by the number

f1,2�x0,y0�

t some regular point �x0 ,y0� of V.
Corollary 1: Let V be a superintegrable nondegenerate potential, Then the space of third-

rder skew-adjoint symmetries is one dimensional and is spanned by commutators of the second-
rder self-adjoint symmetries.

Corollary 2: Let V be a superintegrable nondegenerate potential and S1 ,S2 be second-order
ormally self-adjoint symmetries with matrices A�1� ,A�2�, respectively. Then

�S1,S2� � 0 Û �A�1�,A�2�� � 0 Û �A�1��x0�,A�2��x0�� = 0
t a regular point x0.
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II. A STANDARD FORM FOR 2D QUANTUM SYSTEMS

In analogy with the classical case, there is a standard structure for 2D quantum nondegenerate
uperintegrable systems allowing the identification of the space of second-order symmetry opera-
ors with the space of 2�2 symmetric matrices, and identification of the space of third-order
ymmetry operators with the space of 2�2 skew-symmetric matrices. Indeed, if x0 is a regular
oint then there is a 1-1 linear correspondence between second-order operators S and their asso-
iated symmetric matrices A�x0�. Let �S1 ,L2��= �S2 ,S1� be the reversed operator commutator.
hen the map

�S1,S2�� ↔ �A�1��x0�,A�2��x0��

s an algebraic isomorphism. Here, S1 ,S2 are in involution if and only if matrices A�1��x0� ,A�2�
�x0� commute. If �S1 ,S2��0 then it is a truly third-order symmetry operator �except in the

sotropic oscillator case� and can be uniquely associated with the skew-symmetric matrix �A�1�
�x0� ,A�2��x0��. Since commutators of second-order symmetries span the space of third-order

ymmetries, we can identify these 1-1 with 2�2 skew-symmetric matrices. Let Eij be the 2�2
atrix with a 1 in row i, column j and 0 for every other matrix element. Then the symmetric
atrices

A�ij� = 1
2 �Eij + E ji� = A�ji�, i, j = 1,2 �16�

orm a basis for the three-dimensional space of symmetric matrices. Moreover,

�A�ij�,A�k��� = 1
2 �� jkB�i�� + � j�B�ik� + �ikB�j�� + �i�B�jk�� , �17�

here

B�ij� = 1
2 �Eij − E ji� = − B�ji�, i, j = 1,2.

ere B�ii�=0 and B�12� forms a basis for the space of skew-symmetric matrices. Thus �17� gives the
ommutation relations for the second-order symmetry operators. If V is the isotropic oscillator
hen there is no truly third-order symmetry. For any other nondegenerate potential, the space of
ymmetries is exactly one dimensional.

We reformulate the problem of determining the second-order symmetry operators of �9� by
etting

W�x� = f1V1 + f2V2 + f11V11

nd substituting this expression into Wi=�� j=1
2 aijVj. Additionally we must impose the Killing

ensor conditions. We obtain the equations for the aij:

�a11 = f1
1 + f2A12 + f11A13,

�a12 = f2
1 + f1A12 + f2A22,

�a22 = f2
2 + f1B12 + f2B22, �18�

nd the condition on the first derivatives of the f i:

f2
1 − f1

2 = − f1A12 + f2�A22 − B12� − f11B13. �19�

ote the expressions for f1
11 and f2

11 in terms of f1 , f2 , f11:

f1
11 + f1 + f11�B12 − A22� = 0, f2

11 + f2 + f11A12 = 0.

t follows that we can express each of the second derivatives of f1 , f2 in terms of lower order
1 2 11
erivatives of f , f , f . Thus the system is in involution at the second derivative level, but not at
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he first derivative level because we have only one condition for the four derivatives f1
1 , f2

1 , f1
2 , f2

2.
e can uniquely determine a symmetry operator at a regular point by choosing the six parameters

f1 , f2 , f11, f1
1 , f2

1 , f2
2�. The values of f1 , f2 , f11 at the regular point are analogous to the three param-

ters that we can add to the potentials in the three parameter family. For our standard basis, we fix
f1 , f2 , f11�x0

= �0,0 ,0�. Then from �18� and �19�, we have

� f1
1 f2

1

f1
2 f2

2 � = ��a11 a12

a21 a22� .

hus we can define a standard set of basis symmetry operators S�jk�=�−1�x����i�aij�x���x�� j�
W�ij��x� corresponding to a regular point x0 by

� f1
1 f2

1

f1
2 f2

2 �
x0

= ��x0��a11 a12

a21 a22�
x0

= ��x0�A�jk�, W�jk��x0� = 0.

he condition on W�jk� is actually three conditions since W�jk� depends on three parameters. Note
hat the derivative terms ai

ij in the expression for the basis symmetries can be computed explicitly
rom the conditions for classical second order symmetries in Ref. 1.

In exact analogy with the classical case, we can use the standard form to prove multisepara-
ilty for quantum systems.

Theorem 3. Let V be a quantum superintegrable nondegenerate potential and S be a second-
rder symmetry operator with matrix function A�x�. If at some regular point x0 the matrix A�x0�
as two distinct eigenvalues, then H ,S characterize an orthogonal separable coordinate system.

Since a generic 2�2 symmetric matrix has distinct roots, it follows that any such superinte-
rable nondegenerate potential is multiseparable.

V. THE QUANTUM QUADRATIC ALGEBRA

We investigate the space of fourth-order differential operators F that commute with the Hamil-
onian: �H ,F�=0. Determination of all possible operators F is very difficult but, again, there are
implifications that make the problem tractable:

1. We are interested, principally, in the space of fourth-order symmetries that is spanned by the
ouble commutators ��S�1� ,S�2�� ,S�3�� of second-order formally self-adjoint symmetries S�j� of the
uperintegrable system. The double commutators will be formally self-adjoint, so we can limit
urselves to F that are self-adjoint.

2. Since H encodes a three-parameter family of potentials, the symmetry F must also be a
unction of the parameters. The highest order terms a�kji�kji in F �symmetric in � ,k , j , i� will be
ndependent of the parameters but lower order terms may have linear or quadratic parameter
ependence.

3. The self-adjoint requirement uniquely determines the third-order terms in F. They are

�
�,k,j,i

2

�
�a�kji��i��kj .

4. Further, the self-adjoint requirement means that there exist functions a�kji , b̃ij ,W̃ such that
has the unique representation

F = �
�,k,j,i=1

2
1

�
�ij�a�kji��k�� + �

i,j=1

2
1

�
�i�b̃ij�� j� + W̃ , �20�

here the functions b̃ij�x1 ,x2� ,W̃�x1 ,x2� contain the parameter dependence.
5. Equating coefficients of the fifth-order terms in the operator condition �H ,F�=0 where F is
iven by �20� we obtain the relations
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�aiiii

�xi
= − 2�

s=1

2

asiii� ln �

�xs
,

4
�ajiii

�xi
+

�aiiii

�xj
= − 6�

s=1

2

asiij� ln �

�xs
, i � j ,

3
�ajjii

�xi
+ 2

�aiiij

�xj
= − �

s=1

2

asiii� ln �

�xs
− 3�

s=1

2

asijj� ln �

�xs
, i � j , �21�

hich are the conditions for a�kji to be a fourth-order Killing tensor.

6. The remaining conditions on F intertwine �, a�kji, b̃ji, W̃, and V, and are complicated.
ather than solve them directly, we make the unique decomposition

b̃ji�x1,x2,Vx1
,Vx2

,Vx1x1
� = cji�x1,x2� + bji�x1,x2,Vx1

,Vx2
,Vx1x1

� ,

here

bji = �
�=1

3

f ji,�W���, f ji,� = f ij,�,

nd W��� is defined by


W�1�

W�2�

W�3� � = 
 Vx1

Vx2

Vx1x1

� .

hen, equating the linear parameter-dependent terms of third order in the derivatives we obtain the
onditions

�

�xh
f jk,� +

�

�xk
fhj,� +

�

�xj
fkh,� − 2�a�hjk = − �

�=1

3

�f jk,�A��
�h� + fhj,�A��

�k� + fkh,�A��
�j� �

− �
s=1

2

�fsk,��hk + fsj,��kh + fsh,�� jk�
�

�xs
ln � , �22�

here 1	 j ,k ,h	2 and we set a3hjk�0. These conditions are identical to the corresponding
lassical conditions in Ref. 1. Similarly, we set

W̃ = U�0��x1,x2� + U�1��x1,x2,W���� + W�x1,x2,W���� ,

here U�1� depends linearly and W depends quadratically on the W��� and equate the quadratic
arameter-dependent terms of first order in the derivatives. We obtain the conditions

��
s=1

3

bsi �V

�xs
=

�W

�xi
. �23�

Equating the quadratic parameter-dependent coefficients of the zeroth-order terms in the sym-

etry operator condition, we obtain the requirement
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�
s=1

2

bs �V

�xs
= 0, �24�

dentical to �13�. From the integrabilty conditions �� /�xj���W /�xi�= �� /�xi���W /�xj� , i� j for Eq.
23� we obtain the conditions

�xj
f�k,� + �xj

f�k,� − �xk
f�j,� − �xk

f�j,� = �
s=1

2

�A�s
�k�fsj,� + A�s

�k�fsj,� − A�s
�j�fsk,� − A�s

�j�fsk,�� + �
�=1

3

�f�j,�A��
�k�

+ f�j,�A��
�k� − f�k,�A��

�j� − f�k,�A��
�j� � − �f�k,� + f�k,��

�

�xj
ln �

+ �f�j,� + f�j,��
�

�xk
ln � , �25�

here j�k ,1	� ,�	3, and we set f3j,��0.
7. There are eight independent equations �22� with ��3 and we use five of these to define the

ve components aihjk as linear combinations of �� /�xh�f jk,� and f jk,�. We can then eliminate the
ihjk from the remaining three equations to obtain three conditions relating �� /�xh�f jk,� and f jk,�.
here are six terms of the form �� /�xh�f jk,3. Equation �25� with �=�=3 is satisfied identically.
here are two equations �25� with �=3, 1	�	2 and four equations �22� with �=3. Thus all six

erms of the form �� /�xh�f jk,3 can be expressed as linear combinations of f jk,�. There are a total of
welve distinct terms of the form �� /�xh�f jk,m ,1	h , j ,k ,m	2. We have seen that there are three
onditions on these terms remaining from �22�; there are an additional three such conditions from
25� with � ,��3. Thus there is a shortfall of six conditions on the first derivatives �� /�xh�f jk,m.

8. There are a total of eighteen distinct terms of the form ��2 /�xh�x��f jk,m with 1
h , j ,k ,� ,m	2. Differentiating with respect to x1 ,x2 the three first-order conditions of �22�,

rom which the aihjk have been eliminated, we obtain six independent conditions on these second
erivatives. Differentiating each of our expressions for the aihjk and substituting into Eq. �21� we
nd six additional conditions on the second derivatives. Also, we can differentiate the three
quations from �23� with � ,��3 to obtain six additional conditions on the second derivatives.
his allows us to express each second-order derivative as a linear combination of lower order
erivatives. Thus the system is in involution.

9. Conditions �22� and �23�, and the fourth-order Killing tensor conditions are clearly neces-
ary for F to be a skew-adjoint symmetry. To see that they are sufficient will take several steps.

10. Suppose F ,F� are two fourth-order self-adjoint symmetries with the same functions
�kji ,bij ,W �but possibly different cij ,U�j��. Then F−F� is a self-adjoint, symmetry that is second
rder and at most linear in the parameters in the zeroth-order term. Thus the only ambiguity is a
econd-order symmetry operator and we already know these.

11. We conclude that any �truly� fourth-order symmetry operator is uniquely determined, up to
n additive second-order symmetry operator, by the values f jk,��x0� and a subset of six of the
alues �� /�xh

�f jk,m�x0� at a regular point x0. Note that by adding an appropriate linear combination
f purely second-order symmetry operators to the fourth-order symmetry we can achieve

f jk,��x0�=0 for all j ,k ,�, so the maximum possible dimension of the space of purely fourth-order
ymmetries is six.

Now any symmetric second-order polynomial in the second-order symmetry operators is a
ourth-order symmetry operator, and the subspace of polynomial symmetries is at least five and at
ost six. We show that it is exactly six. If A ,B are linear operators, we define their symmetrized

roduct by

�A,B	 � 1
2 �AB + BA� .
Theorem 4: The six distinct monomials
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�S�11�,S�11�	, �S�22�,S�22�	, �S�12�,S�12�	, �S�11�,S�22�	, �S�11�,S�12�	, �S�12�,S�22�	 ,

orm a basis for the space of fourth-order symmetry operators.
Proof: Since the second-order parts of the three symmetry operators S�11� ,S�22� ,S�12� are func-

ionally independent, the six monomials listed above are linearly independent. Hence they form a
asis. Q.E.D.

We can use this result to expand explicitly a general fourth-order self-adjoint symmetry

F = �
�,k,j,i=1

2
1

�
�ij�a�kji��k�� + �

i,j=1

2
1

�
�i�b̃ij�� j� + W̃

n terms of the standard basis. Without loss of generality we can assume that �0,0�=0 is a regular
oint. Then F is uniquely determined �up to an additive second-order self-adjoint symmetry� by
he data a�kji�0� ,�ma�kji�0� ,bmq�0� ,W�0�. We can uniquely match the data a�kji�0� by taking a
inear combination of the basis symmetries

�S�11�,S�11�	, �S�22�,S�22�	, �S�12�,S�12�	, �S�11�,S�12�	, �S�12�,S�22�	 , �S�11�,S�11�	 .

This leaves the symmetry �S�11� ,S�22�	− �S�12� ,S�12�	 whose leading order terms vanish at the
egular point. The expansion coefficient for this term is obtained uniquely from the derivative data

ma�kji�0�. Now we have matched all of the fourth-order terms in F with an expansion of the
elf-adjoint form F�=��ijk��S�ij� ,S�k��	. The difference F−F� is a second-order self-adjoint sym-
etry. The second derivative terms are uniquely determined by the data bmq�0�, W�0�, which has

ot changed since W�ij��0�=0 for all terms in the standard basis, by the data �ma�kji�0�, �msa
�kji�0�,

nd by the coefficients �ijk� which have changed. Thus we can expand the original symmetry in
erms of second-order polynomials in the standard basis, and finally add any constant parameter-
ependent terms. In contrast to the classical case, however, this expansion is more complicated
ecause the expansion coefficients at the fourth-order level effect the expansion coefficients at the
econd-order level

Using an approach very similar to the above we can easily show that the space of truly
ixth-order formally self-adjoint operator symmetries of H cannot exceed the classical maximal
imension of ten. The difference between any two such sixth-order symmetries with the same
lassical data will be a formally self-adjoint fourth-order symmetry. It remains to show that the
aximum possible dimension is actually achieved. If A, B, C are linear operators, we define their

ymmetrized product by

�A,B,C	 � 1
6 �ABC + BAC + CAB + ACB + BCA + CBA� .

Theorem 5: The ten distinct monomials

�S�ii�,S�ii�, S�ii�	, �S�ij�,S�ij�,S�ij�	, �S�ii�,S�ii�,S�ij�	 ,

�S�ij�,S�ij�,S�ii�	, �S�11�,S�12�,S�22�	 ,

or i , j=1,2, i� j form a basis for the space of sixth-order symmetries.
Proof: Since the three symmetries S�11�, S�22�, S�12� have functionally independent second-order

erms, the ten monomials listed above are linearly independent. Hence they form a basis. Q.E.D.
These theorems establish the closure of the quadratic algebra for 2D quantum superintegrable

otentials: All fourth-order and sixth-order symmetry operators can be expressed as symmetric
olynomials in the second-order symmetry operators.

Again, we can use these results to expand explicitly a general sixth-order formally self-adjoint

ymmetry operator
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G = �
n,m,�,k,j,i=1

2
1

�
�nm��anm�kji��kji� + �

�,k,j,i=1

2
1

�
�ij�b̃�kji��k�� + �

i,j=1

2
1

�
�i�c̃ij�� j� + W̃

n terms of the standard symmetrized basis. Here b̃�kji , c̃ij ,W̃ are at most linear, quadratic, and
ubic in the parameters of the potential, respectively. Without loss of generality we can assume
hat �0,0�=0 is a regular point. We can uniquely match the data aijklmn�0� by taking a linear
ombination of the seven symmetries

�S�ii�,S�ii�,S�ii�	, �S�ij�,S�ij�,S�ij�	, �S�ii�,S�ii�,S�j j�	, �S�ii�,S�ii�,S�ij�	 ,

or i , j=1,2, i� j. This leaves the three symmetries

�S�11�,S�11�,S�22�	 − �S�11�,S�12�,S�12�	, �S�12�,S�11�,S�22�	 − �S�12�,S�12�,S�12�	 ,

�S�22�,S�22�,S�11�	 − �S�22�,S�12�,S�12�	 ,

hose leading order terms vanish at the regular point. The expansion coefficients for these three
erms are obtained uniquely from the derivative data �qaijklmn. Now we have matched all of the
ixth-order terms in G with a self-adjoint expansion of the form G�=��ijklmn�S�ij� ,S�kl� ,S�mn�	. The
ifference G−G� is a fourth-order self-adjoint symmetry. It is uniquely determined by the data for
he even order terms of G and by the new data for the even order terms of G�. Now we can use
he above-presented argument to expand this fourth-order symmetry in terms of polynomials in the
tandard basis. The expansion coefficients �ijklmn will be the same as for the classical case, but the
ower order expansion coefficients will differ.

. THE STÄCKEL TRANSFORM FOR 2D QUANTUM SYSTEMS

The quantum analog of the Stäckel transform26 or coupling constant metamorphosis27 for
lassical systems is straightforward in the 2D case. Suppose we have a superintegrable system

H =
1

��x,y�
��11 + �22� + V�x,y� = H0 + V �26�

n local orthogonal coordinates, with nondegenerate potential V�x ,y�:

V22 = V11 + A22V1 + B22V2,

V12 = A12V1 + B12V2 �27�

nd suppose U�x ,y� is a particular solution of Eq. �27�, nonzero in an open set. Then the trans-
ormed system

H̃ =
1

�̃�x,y�
��11 + �22� + Ṽ�x,y� �28�

ith nondegenerate potential Ṽ�x ,y�:

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2,

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2 �29�

s also superintegrable, where

�̃ = �U, Ṽ =
V

,

U
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Ã12 = A12 −
U2

U
, Ã22 = A22 + 2

U1

U
, B̃12 = B12 −

U1

U
, B̃22 = B22 − 2

U2

U
.

ndeed, let S=�1/��i�aij�� j�+W=S0+W be a second-order formally self-adjoint symmetry op-
rator of H and SU=�1/��i�aij�� j�+WU=S0+WU be the special case of this that is in involution
ith �1/����11+�22�+U. Then

S̃ = S0 −
WU

U
H +

1

U
H

s the corresponding formally self-adjoint symmetry operator of H̃, with respect to the metric
s̃2=�U�dx2+dy2�.

Theorem 6:
1.

�H̃, S̃� = 0 Û �H,S� = 0.

2.

S̃ = �
ij

1

�U
�i��aij + �ij 1 − WU

�U
��U�� j + �W −

WUV

U
+

V

U
� .

Proof:

. This is a straightforward verification, using the identities

�H0,S0� = 0, �H0 + V,S0 + W� = 0, �H0 + U,S0 + WU� = 0

and

�A,BC� = B�A,C� + �A,B�C, �A,
1

U
� = −

1

U
�A,U�

1

U

for linear operators A, B, C and nonzero function U.
. This follows from the fact that �iWU=�� ja

ijUj.

Q.E.D.
Corollary 3: If S�1� ,S�2� are second-order symmetry operators for H, then

�S̃�1�, S̃�2�� = 0 Û �S�1�,S�2�� = 0.

Since one can always add a constant to a nondegenerate potential, it follows that 1 /U defines

n inverse Stäckel transform of H̃ to H. We say that two quantum superintegrable systems are
täckel equivalent if one can be obtained from the other by a Stäckel transform. We can now use
heorem 6 to carry over immediately the basic result for 2D Stäckel transforms of classical
uperintegrable systems to 2D quantum superintegrable systems.2

Theorem 7: Every nondegenerate second-order quantum superintegrable system in two vari-
bles is Stäckel equivalent to a superintegrable system on a constant curvature space.

I. NONDEGENERATE 3D QUANTUM SYSTEMS

Here we extend our analysis of classical 3D superintegrable systems with nondegenerate
otentials to the quantum case. �This is less straightforward than in the 2D case.� As mentioned
arlier, these systems arise only for functionally linearly independent bases of symmetries. For a
anifold with metric ds2=��x ,y ,z��dx2+dy2+dz2� we replace the Hamiltonian H= �p1

2+ p2
2

2
p3� /��x ,y ,z�+V�x ,y ,z� by a formally self-adjoint operator
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Ĥ =
1

��x,y,z� �
k,j=1

3

�k� �kj

��x,y,z�
��x,y,z�� j� + V�x,y,z� �30�

n local orthogonal coordinates. Here �kj is the Kronecker delta and the weight function � is to be
etermined. Similarly, we replace a second-order symmetry of the Hamiltonian system S
�k,j=1

3 akj�x ,y ,z�pkpj +W�x ,y ,z�, with akj =ajk, by the formally self-adjoint operator

Ŝ =
1

�
�

k,j=1

3

�k�akj�� j� + W + Ŵ, akj = ajk, �31�

here the function Ŵ�x ,y ,z� is to be determined. These operators are formally self-adjoint with
espect to the bilinear product

�f ,g =� f�x,y,z�g�x,y,z���x,y,z�dx dy dz �32�

n the manifold, i.e.,

�f ,Ĥg = �Ĥf ,g, �f , Ŝg = �Ŝ f ,g

or all local C
 functions f ,g with compact support on the manifold, where we set all boundary
erms equal to 0.

Now we assume that �H ,S	=0 and require �Ĥ , Ŝ�=0. Since Ĥ , Ŝ are formally self-adjoint,

Ĥ , Ŝ� must be formally skew-adjoint. From our assumption �H ,S	=0 it is clear that the coeffi-
ients of the third-derivative terms �ijk in the commutator must vanish, hence also the coefficients
f the second-order terms vanish. Thus there are functions bi such that

�Ĥ, Ŝ� =
1

�
�
i=1

3

�i�bi�� = �
i=1

3 �bi�i +
�bi��i

�
� .

sing �H ,S	=0, we see that

bj = �
i=1

3 � 1

�
�ii +

1

�
��

�
�

i
�i�� 1

�
�
k=1

3

�akj��k� − �
i,�=1

3 �ai��i� +
1

�
�ai���i���� 1

�
��

�
�

j
� +

2

�
Ŵj .

his formula simplifies greatly if we choose �=�. Indeed, we find

bj = −
1

�
� jika

ik +
2

�
Ŵj .

ere i , j, and k are pairwise distinct. We can choose Ŵj =
1
2� jika

ik, so that bj �0 provided the
ntegrability conditions

�iijka
ik = �ij jka

jk

old for i , j ,k pairwise distinct. These conditions are satisfied, as we can verify from the explicit
xpressions for second-order conformal Killing tensors contained in Ref. 3

Theorem 8:

�H,S	 = 0 Û �Ĥ, Ŝ� = 0,

ˆ ˆ ˆ 1 ik
here H ,S are given by (30) and (31) with �=� and Wj = 2� jika (for i , j ,k pairwise distinct).
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We can follow a similar approach to find the quantum analogies of first-order symmetries
=� j=1

2 aj�x ,y ,z�pj, by the formally skew-adjoint first-order operator �with respect to the bilinear
roduct �32��

L̂ =
1

�
�
j=1

3

� j�akj�� . �33�

t is straightforward to prove the following result.
Theorem 9:

�H,L	 = 0 Û �Ĥ,L̂� = 0,

here Ĥ , L̂ are given by �30� and �33� with �=�.

II. THE SPACE OF THIRD-ORDER SYMMETRIES

Now we investigate the third-order differential operators K that commute with the Hamil-
onian: �H ,K�=0. The treatment for the conformally flat 3D case proceeds in almost exact analogy
o the 2D case, so we just sketch the results.

1. Since the second-order symmetries are formally self-adjoint, the commutators will be
kew-adjoint. Thus we can limit ourselves to K that are skew adjoint.

2. Since H encodes a four-parameter family of potentials, the symmetry K must also be a
unction of the parameters. The highest order terms akji�kji in K �symmetric in k , j , i� will be
ndependent of the parameters but lower order terms may have linear parameter dependence.

3. The skew-adjoint requirement uniquely determines the coefficients of the second-order
erms in K. They are

3

2�
�akji��i�kj .

4. The skew-adjoint requirement means that there exist functions akji , b̃i such that K has the
nique representation

K = �
k,j,i=1

3 �akji�kji +
3

2�
�akji��i�kj +

1

2�
�akji��kj�i� + �

i=1

3 �b̃i�i +
1

2�
�b̃i��i� , �34�

here the functions b̃i�x ,y ,z� contain the parameter dependence.
5. Equating coefficients of the fourth-order terms in the operator condition �H ,K�=0 where K

s given by �34� we obtain the classical requirements that the akji be the components of a third-
rder Killing tensor.

6. Equating coefficients of the third-order terms in the condition �H ,K�=0 we obtain relations
hat are consequences of the Killing tensor requirements.

7. The remaining conditions on K intertwine � ,akji , b̃i, and V, and are complicated. Rather
han solve them directly, we make the unique decomposition

b̃i�x1,x2,x3,Vx1
,Vx2

,Vx3
� = ci�x1,x2,x3� + bi�x1,x2,x3,Vx1

,Vx2
,Vx3

� ,
here
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bi = �
j=1

3

f�,j�x1,x2,x3�
�V

�xj
�x1,x2,x3� ,

.e., we can split off the parameter-dependent terms of b̃i from the rest. Then, equating the linear
arameter-dependent coefficients of the second-order terms in the symmetry operator condition,
e obtain the conditions

bk
j + bj

k = 3��
s

askjVs, j � k, j,k = 1,2,3,

bj
j =

3

2
��

s

asjjVs −
1

2�
s

bs�ln ��s, j = 1,2,3, �35�

dentical to the classical requirement.
8. Equating the quadratic parameter-dependent coefficients of the zeroth-order terms in the

ymmetry operator condition, we obtain the requirement

�
s

bsVs = 0, �36�

dentical to the classical equation. There can be at most one skew adjoint K with given aijk ,b�.
Theorem 10: Let K be a third-order skew-adjoint symmetry �11� for a superintegrable system

ith nondegenerate potential V and b̃i=ci�x ,y ,z�+bi�x ,y ,z ,V1 ,V2 ,V3� where

bi = �
j=1

3

f i,j�x,y�
�V

�xj
�x,y,z� .

hen

f�,j + f j,� = 0, 1 	 �, j 	 3

nd K is uniquely determined by the four numbers

f1,2�x0,y0,z0�, f1,3�x0,y0,z0�, f2,3�x0,y0,z0�, f3
1,2�x0,y0,z0�

t any regular point �x0 ,y0 ,z0� of V.
Corollary 4: Let V be a superintegrable nondegenerate potential. Then the space of third-

rder skew-adjoint symmetries is four-dimensional and is spanned by commutators of the second-
rder self-adjoint symmetries.

In exact analogy with the classical case, we can use the standard form to prove multisepara-
ilty for conformally flat 3D quantum systems.4

Theorem 11: Let V be a quantum superintegrable nondegenerate potential. Then the associ-
ted system is multiseparable.

III. THE QUANTUM 3D QUADRATIC ALGEBRA

We investigate the space of fourth-order differential operators F that commute with the Hamil-
onian: �H ,F�=0. The treatment for the conformally flat 3D case proceeds in almost exact analogy
o the 2D case, so we sketch the results.

1. We are interested in the space of fourth-order symmetries that is spanned by the double
ommutators ��S�1� ,S�2�� ,S�3�� of second-order formally self-adjoint symmetries S�j� of the super-
ntegrable system. The double commutators will be formally self-adjoint, so we can limit our-

elves to F that are self-adjoint.
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2. Since H encodes a three-parameter family of potentials, the symmetry F must also be a
unction of the parameters. The highest order terms a�kji�kji in F �symmetric in � ,k , j , i� will be
ndependent of the parameters but lower order terms may have linear or quadratic parameter
ependence.

3. The self-adjoint requirement uniquely determines the third-order terms in F. They are

�
�,k,j,i

2

�
�a�kji��i��kj .

4. The self-adjoint requirement means that there exist functions a�kji , b̃ij ,W̃ such that F has the
nique representation

F = �
�,k,j,i=1

3
1

�
�ij�a�kji��k�� + �

i,j=1

3
1

�
�i�b̃ij�� j� + W̃ , �37�

here the functions b̃ij�x1 ,x2 ,x3� ,W̃�x1 ,x2 ,x3� contain the parameter dependence.
5. Equating coefficients of the fifth-order terms in the operator condition �H ,F�=0 we obtain

he conditions for a�kji to be a fourth-order Killing tensor.

6. The remaining conditions on F intertwine � ,a�kji , b̃ji, W̃, and V, and are complicated.
owever, we can make the unique decomposition

b̃ji�x1,x2,x3,Vx1
,Vx2

,Vx3
� = cji�x1,x2,x3� + bji�x1,x2,x3,Vx1

,Vx2
,Vx3

�

here

bji = �
�=1

4

f ji,�W���, f ji,� = f ij,�,

nd W�j�=Vxj
, W�4�=Vx1x1

.
Then, equating the linear parameter-dependent terms of third order in the derivatives, and the

uadratic parameter-dependent terms of first order in the derivatives, we obtain exactly the clas-
ical conditions on the f ji,�.

Since at most one self-adjoint F can have data a�kji ,bkj, we find3

Theorem 12: The subspace of truly fourth-order self-adjoint symmetry operators is of dimen-
ion at most twenty-one.

If A ,B are linear operators, we define their symmetrized product by

�A,B	 � 1
2 �AB + BA� .

Theorem 13: The twenty-one distinct monomials �S�ij� ,S�jk�	 form a basis for the space of
ourth-order self-adjoint symmetry operators.

Using an approach very similar to the above we can easily show that the space of truly
ixth-order formally self-adjoint operator symmetries of H cannot exceed the classical maximal
imension of fifty-six. If A ,B ,C are linear operators, we define their symmetrized product by

�A,B,C	 � 1
6 �ABC + BAC + CAB + ACB + BCA + CBA� .

Theorem 14: The fifty-six distinct standard monomials �S�hi� ,S�jk� ,S��m�	 form a basis for the
pace of sixth-order self-adjoint symmetry operators.

These theorems establish the closure of the quadratic algebra for 3D quantum superintegrable
otentials: All fourth-order and sixth-order symmetry operators can be expressed as symmetric

olynomials in the second-order symmetry operators.
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X. COVARIANT FORMULATION FOR THE 3D QUANTUM CASE

Theorem 8 yields an operator realization of the classical commutator brackets for second-

rder symmetries but the differential operator part of Ĥ, though formally self-adjoint with respect
o the weight function �, is not the Laplace-Beltrami operator on the manifold. We can obtain the
aplace-Beltrami operator, at the expense of altering the potential V, by means of an appropriate
auge transformation. We now turn to this construction.

Set

H = e−RĤeR, S = e−RŜeR,

here R�x ,y ,z� is a function to be determined. Then �H ,S�=0 if and only if �Ĥ , Ŝ�=0. We will
hoose R such that the differential operator part of H is the Laplace-Beltrami operator on the
anifold with metric ds2=��dx2+dy2+dz2�.

It is straightforward to show that

H = e−RĤeR =
1

�
�
i=1

3

��ii + 2Ri�i + Rii + Ri
2� + V

o, if we set R= 1  4 ln �, we have

H = �
i=1

3 � 1

�3/2�i��1/2�i� +
Rii + Ri

2

�
� + V .

imilarly

S = �
i,j=1

3 � 1

�3/2�i�aij�3/2� j� + aij�Rij + 5RiR j� + ai
ijR j� + W + Ŵ .

The eigenvalue equation for Ĥ on the space with weight function �=� is Ĥ�=E�. Setting
=eR�=�1/4� we see that the eigenvalue equation for � is H�=E� and the eigenfunctions �

ie in the space with weight function �3/2. Note that

�
i=1

3

�Rii + Ri
2�/� = −

1

8
R ,

here R is the Riemannian scalar curvature. The quantum potential is

Ṽ = − 1
8R + V . �38�

If we supplement the classical symmetries with quantum adjustments the corresponding op-
rators are

H =
1
�g

�i�gij�g� j� +
1

8
R ,

S =
1
�g

�i�aij�g� j� +
1

16
ai

iR −
5

16
aijRij −

1

16
�i� ja

ij .

ere � j is the usual covariant derivative on the Riemannian space. This formula always works,
hough aij must be a Killing tensor for a conformally flat space, Indeed for a Hamiltonian H
��x ,y ,z��px

2+ py
2+ pz

2� with symmetry S=aijpipj the following conditions must be satisfied. If aij
s a Killing tensor for a conformally flat space with infinitesimal distance
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ds2 = e−J�x,y,z��dx2 + dy2 + dz2�

hen it must satisfy the equations

��iajk� = g�ijak�, �39�

here

a1 = e2J�x,y,z��a11Jx − a12Jy − a13Jz�, a2 = e2J�x,y,z��− a12Jx + a22Jy − a23Jz� ,

a3 = e2J�x,y,z��− a13Jx − a23Jy + a33Jz� .

ere �39� are the necessary and sufficient conditions that aij is a conformal Killing tensor in flat
pace. We know all solutions for this set of equations. The only constraint is that there exist a
unction J�x ,y ,z� such that the al have the form indicated. Indeed, if we found the al from the
onsiderations of flat space it is clear that

ak =
1

5�
j

�� jajk + �kajj� .

These results carry over in a very satisfactory manner for superintegrable systems with non-
egenerate potential. In this case the parameters occurring in the potential appear only in the V and

terms, exactly as before. The quantum corrections are independent of these parameters.

Theorem 15: Let H, Ĥ, and H be defined as above where H defines a classical superinte-
rable system with nondegenerate potential V. Let S�1� ,S�2� be second-order symmetries of H,

ith corresponding symmetry operators Ŝ�j� ,S�j�. Then

�S�1�,S�2�	 = 0 Û �Ŝ�1�, Ŝ�2�� = 0 Û �S�1�,S�2�� = 0.

Corollary 5: Every conformally flat 3D classical superintegrable system with nondegenerate
otential extends to a unique covariant quantum superintergrable system. The symmetries of the
uantum system admit a quadratic algebra structure.

. THE STÄCKEL TRANSFORM FOR 3D QUANTUM SYSTEMS

We work out the quantum analog of the Stäckel transform26,27 for classical systems. Suppose
e have a superintegrable system with Schrödinger operator

H =
1

�3/2�x,y,z��i=1

3

�i��1/2�x,y,z��i� −
1

8
R��x,y,z� + V�x,y,z� �40�

n local orthogonal coordinates, with scalar curvature R� and nondegenerate potential V�x ,y ,z�:

V33 = V11 + A33V1 + B33V2 + C33V3,

V22 = V11 + A22V1 + B22V2 + C22V3,

V23 = A23V1 + B23V2 + C23V3,

V13 = A13V1 + B13V2 + C13V3,

V12 = A12V1 + B12V2 + C12V3 �41�

nd suppose U�x ,y ,z� is a particular solution of Eq. �41�, nonzero in an open set. Then the

ransformed system
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H̃ = H =
1

�̃3/2�x,y,z�
�
i=1

3

�i��̃1/2�x,y,z��i� −
1

8
R�̃�x,y,z� + Ṽ�x,y,z� �42�

ith nondegenerate potential Ṽ�x ,y ,z�:

Ṽ33 = Ṽ11 + Ã33Ṽ1 + B̃33Ṽ2 + C̃33Ṽ3,

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2 + C̃22Ṽ3,

Ṽ23 = Ã23Ṽ1 + B̃23Ṽ2 + C̃23Ṽ3,

Ṽ13 = Ã13Ṽ1 + B̃13Ṽ2 + C̃13Ṽ3,

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2 + C̃12Ṽ3, �43�

s also superintegrable, where

�̃ = �U, Ṽ =
V

U
,

Ã33 = A33 + 2
U1

U
, B̃33 = B33, C̃33 = C33 − 2

U3

U
,

Ã22 = A22 + 2
U1

U
, B̃22 = B22 − 2

U2

U
, C̃22 = C22,

Ã23 = A23, B̃23 = B23 −
U3

U
, C̃23 = C23 −

U2

U
,

Ã13 = A13 −
U3

U
, B̃13 = B13, C̃13 = C13 −

U1

U
,

Ã12 = A12 −
U2

U
, B̃12 = B12 −

U1

U
, C̃12 = C12.

Indeed, let S=��1/�3/2��i�aij�3/2� j�+WR+W=S0+WR+W be a second-order formally self-
djoint symmetry operator of H, where WR is the potential term that depends on the curvature R
nd W is the part that depends on V. Let SU=��1/�3/2��i�aij�3/2� j�+WR+WU=S0+WR+WU be the
pecial case of this that is in involution with

1

�3/2�
i=1

3

�i��1/2�i� −
1

8
R� + U .
Then
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S̃ = S0 −
WU

U
H +

1

U
H

s the corresponding formally self-adjoint symmetry operator of H̃, with respect to the metric
s̃2=�U�dx2+dy2+dz2�.

Theorem 16:
1.

�H̃, S̃� = 0 Û �H,S� = 0.

2.

S̃ = �
ij

1

��U�3/2�i��aij + �ij 1 − WU

�U
���U�3/2�� j + �WR + �WU

U
−

1

U
��R�

8
+ �W −

WUV

U
+

V

U
� .

Proof:

1. We perform an inverse gauge transformation on H ,S to return them to the forms Ĥ , Ŝ, �30�
nd �31�, with �=� and Ŵj =

1
2� jika

ik �for i , j ,k pairwise distinct�. Similarly we perform an inverse

auge transformation on H̃ , S̃ to return them to the forms H̃
ˆ

, S̃
ˆ
, �30� and �31�, with �=U�. These

ommuting operators are formally self-adjoint with respect to the weight function U�. Then it is

straightforward computation to verify that �H̃ˆ , S̃
ˆ �=0Û �Ĥ , Ŝ�=0. Indeed, just as in the 2D case,

ne needs only the identities

�Ĥ0, Ŝ0� = 0, �Ĥ0 + V, Ŝ0 + W� = 0, �Ĥ0 + U, Ŝ0 + WU� = 0

nd

�A,BC� = B�A,C� + �A,B�C, �A,
1

U
� = −

1

U
�A,U�

1

U

or linear operators A ,B ,C and nonzero function U. Then the first part of the theorem follows

rom applying the original gauge transformations to take Ĥ , Ŝ to H ,S and H̃
ˆ

, S̃
ˆ

to H̃ , S̃.
2. This follows from the fact that �iWU=�� ja

ijUj.
Q.E.D.

Corollary 6: If S�1� ,S�2� are second-order symmetry operators for H, then

�S̃�1�, S̃�2�� = 0 Û �S�1�,S�2�� = 0.

At this point it is clear that the basic classical result for 3D Stäckel transforms of conformally
at classical superintegrable systems contained in Ref. 4 can be carried over to 3D quantum
uperintegrable systems.

Theorem 17: Every nondegenerate second-order quantum superintegrable system on a 3D
onformally flat space is Stäckel equivalent to a superintegrable system on a constant curvature
pace.

I. CONCLUSIONS AND OUTLOOK

We showed that 2D classical second-order superintegrable systems with nondegenerate po-
ential and the corresponding 3D conformally flat systems each have a unique quantum superin-
egrable extension, and that the closure of the quadratic algebra and basic structure theory is
nchanged at the quantum level. A critical feature of the proofs is use of the formal self-adjoint
nd skew-adjoint properties of the higher order symmetry operators. For the 2D case the extension
s completely straightforward and the quantum extension has the same nondegenerate potential as

he classical system. For the 3D systems a two-step procedure is required. First the classical
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ystem is extended to a quantum system with appropriate formal self and skew adjoint symmetries
nd such that the potential remains unchanged. This quantum system, however, is not covariant,
.e., the Schrödinger operator does not correspond to a Laplace-Beltrami operator on a curved
anifold. The second step in the procedure is to perform a gauge transformation to obtain cova-

iantly correct Schrödinger operators. This alters the potential by adding a term that depends on
he scalar curvature. We also showed that the Stäckel transform has a unique quantum extension
nd it remains true that all of our quantum superintegrable systems are Stäckel transforms of
onstant curvature superintegrable systems.

All 2D systems have been classified and we are making considerable progress on the 3D
lassification theory for systems with functionally linearly independent bases of symmetries,4

hough the problem is complicated. The next steps in our program are �1� to study 3D superinte-
rable systems with degenerate potentials and �2� to study nondegenerate superintegrable systems
n higher dimensions.
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