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This paper is one of a series that lays the groundwork for a structure and classifi-
cation theory of second order superintegrable systems, both classical and quantum,
in conformally flat spaces. Here we study the Stäckel transformsor coupling con-
stant metamorphosisd as an invertible mapping between classical superintegrable
systems on different spaces. Through the use of this tool we derive and classify for
the first time all two-dimensionals2Dd superintegrable systems. The underlying
spaces are exactly those derived by Koenigs in his remarkable paper giving all 2D
manifoldsswith zero potentiald that admit at least three second order symmetries.
Our derivation is very simple and quite distinct. We also show that every superin-
tegrable system is the Stäckel transform of a superintegrable system on a constant
curvature space. ©2005 American Institute of Physics.fDOI: 10.1063/1.1894985g

I. INTRODUCTION

This is a sequel to our first paper.1 Our purpose is to lay the groundwork for a structure and
classification theory of second order superintegrable systems, both classical and quantum, in
complex conformally flat spaces. Real spaces are considered as restrictions of these to the various
real forms. In Ref. 1 we have given examples, described the background as well as the interest and
importance of these systems in mathematical physics and given many relevant references. Ob-
served features of the systems are multiseparability, closure of the quadratic algebra of second
order symmetries at order 6, use of representation theory of the quadratic algebra to derive spectral
properties of the quantum Schrödinger operator, and a close relationship with exactly solvable and
quasiexactly solvable problems.2–9 Our approach is, rather than focus on particular spaces and
systems, to use a general theoretical method based on integrability conditions to derive structure
common to all systems.

In this paper we study the Stäckel transform, or coupling constant metamorphosis,10,11 for
two-dimensionals2Dd classical superintegrable systems. Recall that for a classical 2D system on a
Riemannian manifold we can always choose local coordinatesx,y, not unique, such that the
Hamiltonian takes the form

H =
p1

2 + p2
2

lsx,yd
+ Vsx,yd.
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This system issecond order superintegrablewith nondegeneratepotentialV=Vsx,y,a ,b ,gd if it
admits three functionally independent quadratic constants of the motion

Sk = o
i j

askd
i j pipj + Wskdsx,y,a,b,gd.

sWe also refer to these constants of the motion as symmetries because; each leads to a conserved
quantity for the associated physical system; their Poisson brackets with the Hamiltonian vanish, so
that they are generalized symmetries in the Lie sense; and their quantizations lead to second order
partial differential operators that commute with the Schrödinger operator, so are again generalized
symmetries in the Lie sense.d The potentialV is nondegenerate in the sense that at any regular
point x0,y0 where the potential is defined and analytic and theSk are functionally independent, we
can prescribe the values ofV1sx0,y0d ,V2sx0,y0d ,V11sx0,y0d arbitrarily by choosing appropriate
values for the parametersa ,b ,g. Here,V1=]V/]x, V2=]V/]y, etc. fAnother way to look at this
is to say thatV1sx0,y0d ,V2sx0,y0d ,V11sx0,y0d are the parameters.g This is in addition to the trivial
constant that we can always add to a potential. This requirement implies that the potential satisfies
a system of coupled PDEs of the form

V22 = V11 + A22sx,ydV1 + B22sx,ydV2, V12 = A12sx,ydV1 + B12sx,ydV2.

The Stäckel transform is a conformal transformation of a superintegrable system on one space
to a superintegrable system on another space. We prove that all nondegenerate 2D superintegrable
systems are Stäckel transforms of constant curvature systems and give a complete and simple
classification of all 2D superintegrable systems. The following papers will extend these results to
three-dimensionals3Dd systems and the quantum analogs of 2D and 3D classical systems.

II. THE STÄCKEL TRANSFORM FOR TWO-DIMENSIONAL SYSTEMS

The Stäckel transform10 or coupling constant metamorphosis11 plays a fundamental role in
relating superintegrable systems on different manifolds. The basic idea behind this transform has
long been observed in various important classical and quantum mechanical systems. One of the
most familiar is the Hamilton–Jacobi equation for the classical Coulomb problemH;p1

2+p2
2

+p3
2+Z/ r =E wherer is the radial coordinate andZ is the charge. Division of the equation by the

potential termr−1 converts it into the pseudo-Coulomb problemH8; rsp1
2+p2

3+p3
2d−Er=−Z,

much easier to solve from a group theoretic point of view, where the space has changed and the
energy and charge have switched roles. In Ref. 11 it was pointed out that ifH+ZVsxd=E is an
integrable Hamiltonian system for some additive potentialV and all values of the parametersZ,E,
then the systemH /V−E/V=Z is also integrable, where the parametersE and Z have changed
roles. This general transformation was called coupling constant metamorphosis. Independently in
Ref. 10 it was observed that if the Hamilton–Jacobi equationsSgij p1pj +Vsqd=E, Sgij p1pj

+Usqd=E each admit a complete integral via separation of variables in the orthogonal coordinates
q, whereU is nonzero, then the systemU−1Sgij p1pj +U−1Vsqd=E8 also admits a complete integral
via separation in the same coordinates, but on a different manifold. The second order constants of
the motion that describe the separation and the corresponding Stäckel matrices are mapped into
one another by the transformation. We called this the Stäckel transform since it preserved the
Stäckel form of the separable system. All of these observations have straightforward extensions to
n dimensions and to the corresponding quantum mechanical operators.

Suppose we have a superintegrable system

H =
p1

2 + p2
2

lsx,yd
+ Vsx,yd s1d

in local orthogonal coordinates, with nondegenerate potentialVsx,yd,
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V22 = V11 + A22V1 + B22V2,

s2d
V12 = A12V1 + B12V2

and supposeUsx,yd is a particular solution of equationss2d, nonzero in an open set. Then the
transformed system

H̃ =
p1

2 + p2
2

l̃sx,yd
+ Ṽsx,yd s3d

with nondegenerate potentialṼsx,yd,

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2,

s4d
Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2

is also superintegrable, where

l̃ = lU, Ṽ =
V

U
,

Ã12 = A12 −
U2

U
, Ã22 = A22 + 2

U1

U
, B̃12 = B12 −

U1

U
, B̃22 = B22 − 2

U2

U
.

Let S=Saij pipj +W=S0+W be a second order symmetry ofH andSU=Saij pipj +WU=S0+WU be
the special case of this that is in involution withp1

2+p2
2/l+U. Then

S̃= S0 −
WU

U
H +

1

U
H

is the corresponding symmetry ofH̃. Since one can always add a constant to a nondegenerate

potential, it follows that 1/U defines an inverse Stäckel transform ofH̃ to H. See Refs. 10 and 12
for many examples of this transform. We say that two superintegrable systems are Stäckel equiva-
lent if one can be obtained from the other by a Stäckel transform.

A. A Stäckel transform approach to the classification of nondegenerate
superintegrable systems

Through the use the Stäckel transform we can develop a method for classifying 2D nonde-
generate superintegrable systems that is differential equations based.sIn particular it is distinct
from the Koenigs analytic function approach to finding spaces that admit at least three second
order Killing tensors.d Let

ds2 = lsx,ydsdx2 + dy2d

be a metric for a nondegenerate superintegrable system. We recall from Sec. 2 of Ref. 1 that
necessary and sufficient conditions foraij to be a second order Killing tensor forl are that

Da12 = 0, Dsa11 − a22d = 0, D = ]x
2 + ]y

2,

where

sa22 − a11d2 = 2a1
12, sa22 − a11d1 = − 2a2

12,

and theaij satisfy the integrability condition
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sl22 − l11da12 − l12sa22 − a11d = 3l1a1
12 − 3l2a2

12 + sa11
12 − a22

12dl. s5d

Sincel is nondegenerate superintegrable we have three independent symmetries of the formS
=Saij pipj +W and a nondegenerate potentialV satisfying the Bertrand–Darboux equations

sV22 − V11da12 + V12sa11 − a22d = F sla12d1 − sla11d2

l
GV1 + F sla22d1 − sla12d2

l
GV2 s6d

for all symmetries with quadratic termsaij .
For a superintegrable system we can always use the independent symmetries to solve equa-

tions s6d for V22−V11,V12 in the form s2d. If these two equations are the only conditions on the
potential functionV then it will depend on four parameters, the maximum number possible. Thus
we can prescribe the derivativesV1,V2,V11 and the value ofV at a fixed point. This is the case of
a nondegenerate potential. If, however, the equationss6d put additional conditions on the potential
then there will be a restriction on the first derivatives and the potential will depend on fewer
parameters than four. In this case the potential is degenerate. In Ref. 1 we showed that superin-
tegrable systems with three and two parameter potentials were, essentially, just restrictions of the
four parameter nondegenerate potentials. One parameter potentialssi.e., constant potentialsd are
different. They in general are not restrictions of nondegenerate potentials and, indeed, the qua-
dratic algebra structure may not hold. See Ref. 13 for a counterexample.

Returning to our nondegeneracy assumption, the system of equationss6d has a four parameter
family of solutionsV, counting the addition of a scalar toV as a parameter. Also, every Stäckel

transform of this system to a system with metricm must be of the formV̂=m /l whereV=V̂ is
some particular solution of the equationss6d. Thus it is of interest to determine the equations that
characterizem.

To simplify the computations to follow, we recall that we can choose our orthogonal coordi-
natesx,y such that one of our symmetries takes the forma12;0, a22−a11=1. In this system the
symmetry ands5d imply l12=0, and, as we will see,m12=0. A second symmetry is defined by the
Hamiltonian itself,a11=a22=1/l, a12=0, which clearly always satisfies equationss5d ands6d. Due
to nondegeneracy, for the third symmetry we must havea12Þ0 and it is on this third symmetry
that we will focus our attention in the following. Now the fundamental integrability conditions can
be rewritten as

l12 = 0, l22 − l11 = 3l1A1 − 3l2A2 + sA11 + A1
2 − A22 − A2

2dl, s7d

whereA=ln a12 and the subscripts denote differentiation. Similarly, using this result ands6d we
find that the equations characterizingm are

m12 = 0, m22 − m11 = 3m1A1 − 3m2A2 + sA11 + A1
2 − A22 − A2

2dm. s8d

Note that these two equations appear identical. However they have different interpretations. The
fixed metricl satisfiess7d and is a special solution ofs8d. Herem designates a four-parameter
family of solutions, of whichl is a particular special case. It follows thatA satisfies the integra-
bility conditions for this system.

Let us apply]12 to both sides ofs8d. The result, usingm12=0 andDa12=0, is

0 = 3A12sm11 − m22d + s3A112+ 2fA11 + A1
2g2dm1 + s− 3A122+ 2fA11 + A1

2g1dm2 + 2msA11 + A1
2d12.

s9d

There are two possibilities here.

s1d Case I: A12=0. Then every term in the preceding equation vanishes identically. We
conclude thata12 factors asa12=XsxdYsyd, whereDa12=0. Thus there is a constanta
such that
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X9 = a2X, Y9 = − a2Y.

We have solutions

Xsxd = b1e
ax + b2e

−a2x, Ysyd = g1e
iay + g1e

−iay.

Variables separate in the equations form into two ODEs. Thus for every choice ofa12

we can find all solutionsm explicitly.
s2d Case II: A12Þ0. Now the coefficients ofm11,m22 in s9d are nonvanishing. The equation can

be rewritten as

m22 − m11 = m1F3A112+ 2sA11 + A1
2d2

3A12
G + m2F− 3A122+ 2sA11 + A1

2d1

3A12
G + 2msA11 + A1

2d12.

Sincem is a four-parameter solution, the coefficients ofm1,m2, andm can be equated. Thus
we have three new identities, which together withDa12=0 give

sid 9A1A12 = 3A112+ 2sA11 + A1
2d2, sii d 9A2A12 = 3A122+ 2sA22 + A2

2d1,

s10d
siii d 3sA11 + A1

2dA12 = sA11 + A1
2d12, sivd A11 + A1

2 + A22 + A2
2 = 0.

The first two identities implyA12=CeA for some nonzero constantC. This is the Liouville
equation with general solution

a12 = eA =
2X8sxdY8syd

CsXsxd + Ysydd2 ,

whereXsxd andYsyd are functions such thatX8sxdY8sydÞ0. At this point it is convenient to
useX,Y as new coordinates. Thus there are functionsFsXd ,GsYd such that

sX8d2 = FsXd, X9 = 1
2F8sXd, sY8d2 = GsYd, Y9 = 1

2G8sYd.

Substituting these expressions into the identitiessid–sivd we obtain a system of functional
differential equations forF ,G with the general solution

FsXd =
a

24
X4 +

g1

6
X3 +

g2

2
X2 + g3X + g4,

GsYd = −
a

24
Y4 +

g1

6
Y3 −

g2

2
Y2 + g3Y − g4,

wherea ,g j are constants. Note that the equations forx,y in terms ofX,Y take the form of
elliptic integrals,

x =E dX

Î a
24X

4 +
g1

6 X3 +
g2

2 X2 + g3X + g4

,

y =E dY

Î−a
24Y4 +

g1

6 Y3 −
g2

2 Y2 + g3Y − g4

.

Again, variables separate into two ODEs in the equations form. Thus for every choice ofa12

we can find all solutionsm explicitly.

Theorem 1: If ds2=lsdx2+dy2d is the metric of a nondegenerate superintegrable system
sexpressed in coordinatesx,y such thatl12=0d thenl=m is a solution of the system
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m12 = 0, m22 − m11 = 3m1sln a12d1 − 3m2sln a12d2 + Sa11
12 − a22

12

a12 Dm, s11d

where either

sId a12 = XsxdYsyd, X9 = a2X, Y9 = − a2Y,

or

sII d a12 =
2X8sxdY8syd

CsXsxd + Ysydd2 ,

sX8d2 = FsXd, X9 =
1

2
F8sXd, sY8d2 = GsYd, Y9 =

1

2
G8sYd,

where

FsXd =
a

24
X4 +

g1

6
X3 +

g2

2
X2 + g3X + g4,

GsYd = −
a

24
Y4 +

g1

6
Y3 −

g2

2
Y2 + g3Y − g4.

Conversely, every solutionl of one of these systems defines a nondegenerate superintegrable
system. Ifl is a solution then the remaining solutionsm are exactly the nondegenerate superin-
tegrable systems that are Stäckel equivalent tol.

This result provides the basis for a simple classification of all nondegenerate superintegrable
systems. In fact the spaces that arise correspond one-to-one with Koenigs’ tables of 2D spaces that
admit at least three second order symmetries. Indeed, from the fact thatFsXd andGsYd are fourth
order polynomials we can determine which solutions of the functionsXsxd andYsyd yield the lists
drawn up by Koenigs in his two tables.sWe give the details of these tables in Sec. II B.d

To understand more clearly the significance of casessId andsII d in the preceding theorem, we
make use of the symmetry of equationss8d, first exploited by Koenigs. We write the system in the
form

a11
12 + a22

12 = 0, m12 = 0, a12sm11 − m22d + 3m1a1
12 − 3m2a2

12 + sa11
12 − a22

12dm = 0, s12d

Lemma 1: Supposem=lsx,yd, a12=asx,yd satisfy s12d. Then m= ãsx,yd, a12= l̃sx,yd also
satisfy s12d where

ãsx,yd = asx + y,ix − iyd, l̃sx,yd = lsx − iy,y − ixd.

This transformation is invertible.

Proof: It is straightforward to check thatã12=0, l̃11+ l̃22=0. The symmetry of the third
equation under this invertible transform is obvious. Q.E.D.

Theorem 2: Systems12d characterizes a nondegenerate superintegrable system if and only if
the metricã12sx,yd is of constant curvature. Equivalently, the systems12d characterizes a nonde-

generate superintegrable system if and only if the symmetrya12 is the imagea12= l̃ where the
metric l swith l12=0 is of constant curvatured.

Proof: Systems12d characterizes a nondegenerate superintegrable system if and only if the
symmetrya12 satisfies the Liouville equationsln a12d12=Ca12 for some constantC. fIf C=0 we
have casesId, and if CÞ0 we have casesII d.g It is straightforward to check that this means that

053510-6 Kalnins, Kress, and Miller J. Math. Phys. 46, 053510 ~2005!

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



ã11
12 + ã22

12

sã12d2 −
sã12

1d2 + sã2
12d2

sã12d3 = 4iC,

so the scalar curvature of metricã12sdx2+dy2d is constant. Similarly, ifl is of constant curvature

then l̃ satisfies Liouville’s equation. Q.E.D.
Theorem 3: Every nondegenerate superintegrable 2D system is Stäckel equivalent to a non-

degenerate superintegrable system on a constant curvature space.
Proof: Every nondegenerate superintegrable 2D system with metriclsdx2+dy2d corresponds

to a functiona0
12 and a system of equationss12d swith a12=a0

12d wherem=l is a solution and the
integrabilty conditions are satisfied identically, so that the space of solutionsm is four dimen-
sional. From Theorem 1 we see thata0

12 must satisfy the Liouville equation, so by Theorem 2 the
metric j= ã0

12 is of constant curvature. Recall that the space of second order symmetries of a
constant curvature space is six dimensional. Consider the possible symmetriesa12 such that stan-
dard equations

a11
12 + a22

12 = 0, a12sj11 − j22d + 3j1a1
12 − 3j2a2

12 + sa11
12 − a22

12dj = 0

are satisfied. One constant curvature space symmetry witha12=0 determines the separable coor-
dinateshx,yj and one symmetry is the Hamiltoniansp1

2+p2
2d /l. A basis for the remaining sym-

metries consists of four linearly independent symmetries witha12 harmonic and nonzero. It is clear
that the Koenig duality mappingm̃ for m a solution of systems12d maps the four-dimensional
space of solutionsm sexceptm=0d one-to-one onto the constant curvature space symmetries with
a12 harmonic and nonzero. For constant curvature spaces we know that there are symmetriesa12

that define nondegenerate superintegrable systemssthe systems on flat space and the 2-sphere.d Let
a12=b12 be one such symmetry. By Theorem 1b12 satisfies the Liouville equation. Since the
Koenigs duality map is onto, there must exist a solutionm=n of systems12d such thatñ=b12. By
Theorem 2n is the metric of a constant curvature space. This means that the system with metric
l is Stäckel equivalent to the constant curvature system with metricn. Q.E.D.

B. Examples and relationship with the Koenigs tables

In a tour de force, Koenigs14 has classified all 2D manifolds that admit exactly three second
order Killing tensors and listed them in two tables, Table VI and Table VII.

In each case Koenigs gave the terms that give rise to the leading coefficients of the additional
quadratic constant of the motion not implicitly defined by the Liouville form of the metric. We
have given these metrics in a symmetric orthogonal form.

We can now reproduce the tables via the duality between separable coordinate systems on
spaces of constant curvature and the form of the Killing tensors admitted in these particular
coordinate systems.

For example, takinga=1 in casesId, a solution fora12 is

Xsxd = sinx, Ysyd = sinhy ⇒ a12 = sinx sinhy.

Now m12=0⇒m= fsxd+gsyd and so Eq.s11d for m becomes

g9 − f9 = 3f8 cotx − 3g8 cothx − 2sf + gd

which separates into a pair of ordinary differential equations,

g9 + 3 cothyg8 + 2g = K, f9 + cotxf8 − 2f = K,

for some separation constantK. These equations have solutions

fsxd =
c1 cosx + c2

sin2 x
−

1

2
K, gsyd =

c3 coshy + c4

sinh2 y
+

1

2
K

and so
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m =
c1 cosx + c2

sin2 x
+

c3 coshy + c4

sin2 y
. s13d

In the preceding, we have used coordinates in which the metric was a multiple of dx2+dy2,
while Koenigs used coordinates in which the metric was a multiple of dx dy. To bridge this gap,
we make the change of coordinatesx→a, y→ ib to obtain swith a trivial redefinition of the
parameterscid the first metric in Table VI.

The remaining metrics in Table VI are obtained by similar calculations using the following
particular solutions to the casesId equations in Theorem 1:

s1d X = sinx, Y = sinhy,

s2d X = sinhx, Y = eiy ,

s3d X = ex, Y = eiy ,

s4d X = x, Y = y,

s5d X = x, Y = 1,

s6d X = Y = 1,

The metrics in Table VII are obtained from particular solutions to the casesII d equations in
Theorem 1 in the same way as described for Table VI.

s1d BothFsXdandGsYdare general fourth order polynomials,

s2d H4FsXd = 1 −X2

4GsYd = Y2 − 1
J ⇒ HX = − 2 cos 2x,

Y = cosh 2y,
J

s3d H FsXd = X2sX − 1d2

GsYd = − Y2sY + 1d2J ⇒ 5 X =
1

1 + ex ,

Y =
1

− 1 +eiy ,6
s4d H FsXd = X3sX − 1d

GsYd = − Y3sY + 1d J ⇒5 X =
1

1 − 1
4x2

,

Y = −
1

1 + 1
4y2

,6
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s5d HFsXd = 1

GsYd = 1
J ⇒ HX = x,

Y = y,
J

There are clearly other choices possible forX andY but they revert to various versions of the
cases given in Koenigs’ tables. Since a single space may have more than one nondegenerate
potential, our classification may include a space more than once.

Next, we examine each of his spaces and show in detail what was proved in the last section:
that every superintegrable system on the space can be obtained as the Stäckel transform of a
constant curvature space with respect to Koenigs Table VI,

s1d ds2 = Fc1 cosa + c2

sin2 a
+

c3 cosb + c4

sin2 b
Gsda2 − db2d

s2d ds2 = Fc1 cosha + c2

sinh2 a
+

c3e
b + c4

e2b Gsda2 − db2d

s3d ds2 = Fc1e
a + c2

e2a +
c3e

b + c4

e2b Gsda2 − db2d

s4d ds2 = Fc1sa2 − b2d +
c2

a2 +
c3

b2 + c4Gsda2 − db2d

s5d ds2 = Fc1sa2 − b2d +
c2

a2 + c3b + c4Gsda2 − db2d

s6d ds2 = fc1sa2 − b2d + c2a + c3b + c4gsda2 − db2d

and Koenigs Table VII,

s1d ds2 = Fc1S 1

sn2sa,kd
−

1

sn2sb,kdD + c2S 1

cn2sa,kd
−

1

cn2sb,kdD + c3S 1

dn2sa,kd

−
1

dn2sb,kdD + c4ssn2sa,kd − sn2sb,kddGsda2 − db2d

s2d ds2 = Fc1S 1

sin2 a
−

1

sin2 b
D + c2S 1

cos2 a
−

1

cos2 b
D + c3scos 2a − cos 2bd

+ c4scos 4a − cos 4bdGsda2 − db2d

s3d ds2 = fc1ssin 4a − sin 4bd + c2scos 4a − cos 4bd + c3ssin 2a − sin 2bd

+ c4scos 2a − cos 2bdgsda2 − db2d

s4d ds2 = Fc1S 1

a2 −
1

b2D + c2sa2 − b2d + c3sa4 − b4d + c4sa6 − b6dGsda2 − db2d

s5d ds2 = fc1sa − bd + c2sa2 − b2d + c3sa3 − b3d + c4sa4 − b4dgsda2 − db2d

to a nondegenerate superintegrable potential. In Refs. 3–16 the authors have computed all the
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nondegeneratesand degenerated superintegrable potentials for complex 2D flat space, potentials
fE1g–fE20g, and nonzero constant curvature space, potentialsfS1g–fS9g, and we identify the
relevant potentials on the list that is given in Ref. 16.

1. Table VI

s1d In this case the infinitesimal distance has the form

ds2 = Sc1 cosa + c2

sin2 a
+

c3 cosb + c4

sin2 b
Dsda2 − db2d.

If we rewrite the Hamilton–Jacobi equation on the sphere,

H = p1
2 + p2

2 + p3
2 + ĉ1 +

iĉ2s3

Îs1
2 + s2

2
+

ĉ3s2

s1
2Îs1

2 + s2
2

+
ĉ4

s1
2 = E,

using a variant of spherical coordinates

s1 =
sinb

sina
, s2 =

cosb

sina
, s3 = − i

cosa

sina

we obtain the form

pb
2 − pa

2 −
E + ĉ1

sin2 a
−

ĉ2 cosa

sin2 a
−

ĉ3 cosb

sin2 b
−

ĉ4

sin2 b
= 0.

Thus the potential from which this metric has been derived via Stäckel transform isfS7g.
s2d In this case the metric is

ds2 = Sc1 cosha + c2

sinh2 a
+ c3e

−b + c4e
−2bDsda2 − db2d

Choosing Euclidean space coordinates of the form

x = exps− 1
2udcoshs 1

2vd, y = i exps− 1
2udsinhs 1

2vd
and substituting into the Hamilton–Jacobi equation

H = px
2 + py

2 + ĉ1sx2 + y2d +
ĉ2

x2 +
ĉ3

y2 + ĉ4 = E

we obtain the form

pu
2 − pv

2 +
1

4
ĉ1e

−2u + C2
coshv
sinh2 v

+ C3
1

sinh2 v
+

1

4
sĉ4 − Ede−u,

whereC2= 1
2sĉ2+ ĉ3d andC3= 1

2sĉ3− ĉ2d. From this it follows that the potential from which this
metric is derived via Stäckel transform isfE1g.

s3d In this case the infinitesimal distance has the form

ds2 = sc1e
−a + c2e

−2a + c3e
−b + c4e

−2bdsda2 − db2d.

In the variables

x = e−a coshb, y = − ie−a sinhb

this metric assumes the form

ds2 = S c1

Îx2 + y2
+ c2 +

c3

Îx2 + y2sx + iyd
+

c4

sx + iyd2Dsdx2 − dy2d.
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We recognize this as arising via Stäckel transform fromfE17g. Indeed note that if we write
out the equationH=E in suitable coordinates we obtain

p1
2 + p2

2 +
ĉ1

Îx2 + y2
+

ĉ2

sx + iyd2 +
ĉ3

Îx2 + y2sx + iyd
− E = 0

from which we can clearly see the identification.
s4d In this case the infinitesimal distance is

ds2 = Sc1sa2 − b2d +
c2

a2 +
c3

b2 + c4Dsda2 − db2d,

and by settinga=x, b= iy this metric can be clearly related to a Stäckel transform from the
potentialfE1g.

s5d Here

ds2 = Sc1sa2 − b2d +
c2

a2 + c3b + c4Dsda2 − db2d.

It is clear that this metric is derived by Stäckel transform from the potential

V = ĉ1sx2 + y2d +
ĉ2

x2 + ĉ3y + ĉ4,

wherea=x, b= iy. As we do not distinguish the use of Cartesian coordinates in any way it is
always possible to rotate and translate them. If we do this then for the various choices ofĉi
we have the following potentials from our complete list.

sid ĉ1Þ0: We can translate with respect toy and makeĉ3=0 to obtain a special case of
fE1g. If further ĉ2=0 then we obtainfE3g.

sii d ĉ1=0: We have a special case offE2g if ĉ2,ĉ3Þ0. If ĉ3=0 we obtainfE6g, and if ĉ2
=0 we obtainfE5g.

s6d Here

ds2 = sc1sa2 − b2d + c2a + c3b + c4dsda2 − db2d

and this is easily recognized to be in the form corresponding to the potential

V = ĉ1sx2 + y2d + ĉ2x + ĉ3y + ĉ4.

This can easily be interpreted. Ifĉ1Þ0 then we can takeĉ2 andĉ3=0 by suitable translations
and relate our system to a Stäckel transform offE3g. If ĉ1=0 thenV can take one of the two
forms

sid V=asx+ iyd+b corresponding tofE4g or
sii d V=ax corresponding tofE6g.

2. Table VII

s1d Here the metric has the form

ds2 = c1sPsad − Psbdd + c2sPsa + v1d − Psb + v1dd + c3sPsa + v2d − Psb + v2dd

+ c4sPsa + v3d − Psb + v3ddsda2 − db2d,

wherePsad is the Weierstrass function.17 If we make the choicee1=1/k2, e2=1, ande3=0 in
the standard formulas for these functions we can relate them directly to the Jacobi elliptic
functions,17 via the formulas
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Pskzd =
1

k2 sn2sz,kd
, Pskz+ v1d =

1

k2 −
k82 sn2sz,kd
k2 cn2sz,kd

,

Pskz+ v2d = sn2sz,kd, Pskz+ v3d = 1 −k82sn2sz,kd
cn2sz,kd

.

With these formulas the relationship to a constant curvature superintegrable system becomes
clear. Indeed if we write the Hamilton–Jacobi equation

H = p1
2 + p2

2 + p3
2 +

ĉ1

s1
2 +

ĉ2

s2
2 +

ĉ3

s3
2 + ĉ4 = E

using conical coordinates in Jacobi elliptic function form,17 viz.

s1 = k snsa,kdsnsb,kd, s2 = i
k8

k
cnsa,kdcnsb,kd,

s3 =
k8

k
dnsa,kddnsb,kd, s1

2 + s2
2 + s3

2 = 1,

then it becomes

pa
2 + pb

2 +
ĉ1

k2S 1

sn2sa,kd
−

1

sn2sb,kdD +
ĉ2k82

k2 S 1

cn2sa,kd
−

1

cn2sb,kdD
+

ĉ3k82

k2 S 1

dn2sa,kd
−

1

dn2sb,kdD + sĉ4 − Edssn2sa,kd − sn2sb,kdd = 0

which has the form we expect. This system is therefore related tofS9g on the sphere, via a
Stäckel transform.

s2d In this case

ds2 = Sc1S 1

sin2 a
−

1

sin2 b
D + c2S 1

cos2 a
−

1

cos2 b
D + c3scos 2a − cos 2bd

+ c4scos 4a − cos 4bdDsda2 − db2d.

If we write out the Hamilton–Jacobi equation

H = p1
2 + p2

2 + ĉ1sx2 + y2d +
ĉ2

x2 +
ĉ3

y2 + ĉ4 = E

using coordinatesx=cosa cosb, y= i sina sinb we obtain

pa
2 − pb

2 + ĉ1scos4 b − cos4 bd + ĉ2S 1

cos2 a
−

1

cos2 b
D + ĉ3S 1

sin2 a
−

1

sin2 b
D

+ sĉ4 − Edscos2 b − cos2 ad = 0.

The potential for this case arises fromfE1g via the choice of elliptic coordinates. This is clear
from the usual multiplication formulas

cos 2x = 2 cos2 x − 1, cos 4x = 8 cos4 x − 8 cos2 x + 1.

s3d Here
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ds2 = sc1ssin 4a − sin 4bd + c2scos 4a − cos 4bd + c3ssin 2a − sin 2bd

+ c4scos 2a − cos 2bddsda2 − db2d.

If we write the Hamilton–Jacobi equation

H = p1
2 + p2

2 + ĉ1 +
ĉ2sx − iyd

Îsx − iyd2 + 4
+

ĉ3sx + iyd
ssx − iyd2 + 4dsx − iy + Îsx − iyd2 + 4d2

+ ĉ4sx2 + y2d = E,

using the coordinatesx=2i cosu cosv, y=2 sinu sinv we obtain

pu
2 − pv

2 + 2sĉ1 − 2Edscos 2u − cos 2vd + ĉ2ssin 2u − sin 2vd

+ 1
4ĉ3scos 4u + i sin 4u − cos 4v − i sin 4vd + 2ĉ4scos 4v − cos 4ud = 0

which gives rise to a metric of this type. This corresponds to systemfE7g.
s4d Here

ds2 = Sc1S 1

a2 −
1

b2D + c2sa2 − b2d + c3sa4 − b4d + c4sa6 − b6dDsda2 − db2d.

In the coordinatesx= 1
2sj2+h2d, y= ijh the Hamilton–Jacobi equation

p1
2 + p2

2 + ĉ1s4x2 + y2d + ĉ2x +
ĉ3

y2 + ĉ4 = E

is equivalent to

pj
2 − ph

2 + sĉ4 − Edsj2 − h2d + ĉ1sj6 − h6d +
1

2
ĉ2sj4 − h4d + ĉ3S 1

j2 −
1

h2D = 0,

from which we see that this system is obtained fromfE2g.
s5d The infinitesimal distance has the form

ds2 = sc1sa4 − b4d + c2sa3 − b3d + c3sa2 − b2d + c4sa − bddsda2 − db2d.

Consider the Hamilton–Jacobi equation

H = pzpz̄ + ĉ1 + ĉ2z+ ĉ3Sz̄−
3

8
iz2D −

i

8
ĉ4sz3 + 8izz̄d = E,

wherez=x+ iy, z̄=x− iy. In coordinatesz=4isu+wd, z̄=2isu−wd2 this equation is equivalent
to

pu
2 − pw

2 + 16sĉ1 − Edsu − wd + 64iĉ2su2 − w2d + 128iĉ3su3 − w3d − 256ĉ4su4 − w4d = 0

from which we see that this system is Stäckel equivalent tofE10g with some minor
corrections.

In the last section we gave a simple derivation of all 2D superintegrable systems with non-
degenerate potential. Such systems must admit at least three second order Killing tensors. Koenigs
solved a different and more general problem. He found all spaces that admit at least three second
order Killing tensors. It is a remarkable fact that the lists are the same. Thus from our point of
view the Koenigs derivation is a proof of the following result.

Theorem 4: Every 2D Riemannian space with at least three linearly independent second order
Killing tensors admits a superintegrable system with nondegenerate potential.

Corollary 1: Necessary and sufficient conditions for a superintegrable system with nonde-
generate potential on a 2D Riemannian manifold are that there are local orthogonal coordinates
x,y such that the system takes the formH /Usx,yd where
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H =
px

2 + py
2

lsx,yd
+ Vsx,yd

is a superintegrable system on a constant curvature space with nondegenerate potential

Vsx,yd = aVs1dsx,yd + bVs2dsx,yd + gVs3dsx,yd + d

and

Usx,yd = a0V
s1dsx,yd + b0V

s2dsx,yd + g0V
s3dsx,yd + d0.

Corollary 2: Necessary and sufficient conditions for a 2D Riemannian manifold to admit a
three dimensional space of second order Killing tensors are that there are local orthogonal coor-
dinatesx,y such that the metric takes the form ds2=lsx,ydUsx,ydsdx2+dy2d wherelsx,ydsdx2

+dy2d is a metric on a constant curvature space with nondegenerate potential,

Vsx,yd = aVs1dsx,yd + bVs2dsx,yd + gVs3dsx,yd + d

and

Usx,yd = a0V
s1dsx,yd + b0V

s2dsx,yd + g0V
s3dsx,yd + d0.

III. CONCLUSIONS AND FURTHER WORK

In this paper we have shown that every 2D nondegenerate superintegrable system is Stäckel
equivalentsor equivalent via coupling constant metamorphosisd to a 2D nondegenerate superinte-
grable system on a constant curvature space. We found a simple derivation of all such spaces and
potentials. We found that the list of spaces with nondegenerate potentials coincided with the
Koenigs list of all 2D manifolds with three linearly independent second order Killing tensors.
Thus any 2D space with three second order Killing tensors necessarily admits a nondegenerate
potential.

In a forthcoming paper we will extend these results to 2D quantum systems, where the same
spaces and potentials will occur. We will uncover the structure of the quantum quadratic algebra
generated by the second order symmetry operators and show how to compute it in general.

Extension of our results to 3D systems is more challenging. Here the spaces we consider are
conformally flat, since the Stäckel transform is conformal and the best known examples of super-
integrable systems are in constant curvature spaces. Now for a superintegrable system we must
have five functionally independent symmetries. Although several technical problems related to
dimension must be overcome, we will be able to show that the structure theory for the quadratic
algebras works in analogy to the 2D case. The extension to the quantum case is again more
challenging, but the basic structure results for the quadratic algebra carry over for suitably modi-
fied potentials.
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