5 research outputs found

    Effects of self-directed and other-directed introspection and emotional valence on activation of the rostral prefrontal cortex during aesthetic experience

    Get PDF
    The medial area of the rostral prefrontal cortex (rPFC) has been implicated in self-relevant processing, autobiographical memory and emotional processing, including the processing of pleasure during aesthetic experiences. The goal of this study was to investigate changes in rPFC activity using functional near-infrared spectroscopy (fNIRS) in response to affective stimuli viewed in a self-relevant or other-relevant context. Positive and negative images were displayed to 20 participants under two viewing conditions where participants were asked to think of their own emotions (self) or think about the emotions of the artist who created the work (other). The results revealed an increase of HbO when participants viewed images during the other-condition compared to the self-condition. It was concluded that viewing stimuli from the perspective of another was associated with an increase of cognitive demand. The analysis of deoxygenated haemoglobin (HHb) at right hemispheric areas revealed that activation of the rPFC during the other-condition was specific to the negative images. When images were viewed from the perspective of the self, activation of the rPFC significantly increased at the right-medial area of the rPFC for positive images. Our findings indicate that the influence of valence on rPFC activation during aesthetic experience is contingent on the context of the viewing experience and there is a bias towards positive emotion when images are viewed from the context of the self

    FNIRS activity in the prefrontal cortex and motivational intensity: impact of working memory load, financial reward, and correlation-based signal improvement

    Get PDF
    Previous research has demonstrated changes in neurovascular activation of the prefrontal cortex to increased working memory load. The primary purpose of the current paper was to investigate overload of working memory capacity using functional near-infrared spectroscopy (fNIRS) within the framework of motivational intensity theory. A secondary goal was to explore the influence of the correlation-based signal improvement (CBSI) as a method for correcting the influence of systemic variables. In study one, 30 participants (15 female, mean age = 21.09 years, s.d. = 2.9 years) performed a verbal version of the n-back working memory task under four levels of demand (easy, hard, very hard, and impossible). In contrast to the raw data, CBSI-transformed fNIRS data indicated that neurovascular coupling was highest at hard demand when the task was challenging but success was possible. The second study (N ¼ 30; 15 female, mean age = 22.4 years, s.d. = 5.3) replicated the working memory manipulation with the addition of low versus high levels of financial reward. Analyses of CBSI-transformed levels of oxygenated (HbO) and deoxygenated (HHb) hemoglobin replicated the first study at right lateral regions of the prefrontal cortex (BA46). HHb_CBSI data were significantly reduced at impossible demand for participants receiving the higher level of financial reward. The study is the first to support predictions from the motivational intensity model using neurovascular data. In addition, the application of CBSI to fNIRS data was found to improve the sensitivity of HbO and Hbb to the independent variables

    A brief review of research using near-infrared spectroscopy to measure activation of the prefrontal cortex during emotional processing : the importance of experimental design

    Get PDF
    During the past two decades there has been a pronounced increase in the number of published research studies that have employed near-infrared spectroscopy (NIRS) to measure neural activation. The technique is now an accepted neuroimaging tool adopted by cognitive neuroscientists to investigate a number of fields, one of which is the study of emotional processing. Crucially, one brain region that is important to the processing of emotional information is the prefrontal cortex (PFC) and NIRS is ideally suited to measuring activity in this region. Compared to other methods used to record neural activation, NIRS reduces the discomfort to participants, makes data collection from larger sample sizes more achievable, and allows measurement of activation during tasks involving physical movement. However, the use of NIRS to investigate the links between emotion and cognition has revealed mixed findings. For instance, whilst some studies report increased PFC activity associated with the processing of negative information, others show increased activity in relation to positive information. Research shows differences in PFC activity between different cognitive tasks, yet findings also vary within similar tasks. This work reviews a selection of recent studies that have adopted NIRS to study PFC activity during emotional processing in both healthy individuals and patient populations. It highlights the key differences between research findings and argues that variations in experimental design could be a contributing factor to the mixed results. Guidance is provided for future work in this area in order to improve consistency within this growing field
    corecore