889 research outputs found

    Imaging Radiation Pneumonitis in a Rat Model of a Radiological Terrorism Incident

    Get PDF
    We have developed a rat model of single, sub-lethal thoracic irradiation. Our irradiation protocol is considered representative of exposures near the detonation site of a dirty bomb or small nuclear device. The model is being used to investigate techniques for identifying, triaging and treating possible victims. In addition to physiological markers of right ventricular hypertrophy, pulmonary vascular resistance, and arterial distensibility, we present two methods for quantifying microvascular density. We used methods including microfocal X-ray imaging to investigate changes in lung structure/function resulting from radiation exposure. Radiation pneumonitis is a complication in subjects receiving thoracic irradiation. A radiographic hallmark of acute radiation pneumonitis is a diffuse infiltrate corresponding to the radiation treatment field. We describe two methods for quantifying small artery dropout that occurs in the model at the same time-period. Rats were examined 3-days, 2-weeks, 1-month (m), 2-m, 5-m, and 12-m post-irradiation and compared with aged-matched controls. Right ventricular hypertrophy and increases in pulmonary vascular resistance were present during the pneumonitis phase. Vascular injury was dependent on dose and post-irradiation duration. Rats irradiated with 5 Gy had few detectable changes, whereas 10 Gy resulted in a significant decrease in both microvascular density and arterial distensibility around 2- m, the decrease in each lessening, but extending through 12-m. In conclusion, rats irradiated with a 10 Gy dose had changes in vascular structure concurrent with the onset of radiation pneumonitis that were detectable with our imaging techniques and these structural changes persist after resolution of the pneumonitis

    Non-Alcoholic Fatty Liver Disease Induces Signs of Alzheimer’s Disease (AD) in Wild-Type Mice and Accelerates Pathological Signs of AD in an AD Model

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease afflicting about one third of the world\u27s population and 30 % of the US population. It is induced by consumption of high-lipid diets and is characterized by liver inflammation and subsequent liver pathology. Obesity and consumption of a high-fat diet are known to increase the risk of Alzheimer\u27s disease (AD). Here, we investigated NAFLD-induced liver inflammation in the pathogenesis of AD. Methods: WT and APP-Tg mice were fed with a standard diet (SD) or a high-fat diet (HFD) for 2, 5 months, or 1 year to induce NAFLD. Another set of APP-Tg mice were removed from HFD after 2 months and put back on SD for 3 months. Results: During acute phase NAFLD, WT and APP-Tg mice developed significant liver inflammation and pathology that coincided with increased numbers of activated microglial cells in the brain, increased inflammatory cytokine profile, and increased expression of toll-like receptors. Chronic NAFLD induced advanced pathological signs of AD in both WT and APP-Tg mice, and also induced neuronal apoptosis. We observed decreased brain expression of low-density lipoprotein receptor-related protein-1 (LRP-1) which is involved in β-amyloid clearance, in both WT and APP-Tg mice after ongoing administration of the HFD. LRP-1 expression correlated with advanced signs of AD over the course of chronic NAFLD. Removal of mice from HFD during acute NAFLD reversed liver pathology, decreased signs of activated microglial cells and neuro-inflammation, and decreased β-amyloid plaque load. Conclusions: Our findings indicate that chronic inflammation induced outside the brain is sufficient to induce neurodegeneration in the absence of genetic predisposition

    Novel surgical technique for complete traumatic rupture of the pancreas: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Complete pancreatic rupture is a rare injury. The typical mechanism by which this occurs is overstretching of the pancreas across the vertebral column during blunt abdominal trauma. The management of this injury depends on the location and extent of the injury.</p> <p>Case presentation</p> <p>A 45-year-old Caucasian woman presented with blunt abdominal trauma after she fell onto the end of a handlebar during a bicycle accident. She arrived in the emergency room with stable vital signs and an isolated bruise just above the umbilicus. A computed tomography scan revealed a complete rupture of the pancreas, just ventral to her superior mesenteric vein, and an accompanying hematoma but no additional injuries. An emergency laparotomy was performed; the head of the pancreas was oversewn with interrupted sutures and this was followed by a two-layer pancreaticojejunostomy with the tail of the pancreas. The recovery after surgery was completely uneventful.</p> <p>Conclusions</p> <p>Isolated complete pancreatic rupture is a rare injury that can be managed with complete organ preservation. The combination of suturing the pancreatic head and two-layer pancreaticojejunostomy with the pancreatic tail is a feasible technique to manage this condition.</p

    Experimental Demonstration of Squeezed State Quantum Averaging

    Get PDF
    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.Comment: 4 pages, 5 figure

    Predictors for failure of supraglottic superimposed high-frequency jet ventilation during endoscopic upper airway surgery in pediatric patients

    Get PDF
    Airway surgery in pediatric patients is challenging with regard to balancing surgical exposure with ventilation requirements, as during the procedure the airway must be shared between laryngologist and anesthetist. For endoscopic laryngeal surgery, different methods of ventilation are used, among others jet ventilation via a specifically adapted suspension laryngoscope using a dual jet stream(Supraglottic Superimposed High Frequency Jet ventilation, SSHFJV) (1).High BMI and a history of pulmonary pathology proved to be factors contributing to failing of SSHFJV in adult patients (2). However, factors influencing the failure of SSHFJV in pediatric patients have never been described yet

    ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems

    Get PDF
    ExaHyPE (“An Exascale Hyperbolic PDE Engine”) is a software engine for solving systems of first-order hyperbolic partial differential equations (PDEs). Hyperbolic PDEs are typically derived from the conservation laws of physics and are useful in a wide range of application areas. Applications powered by ExaHyPE can be run on a student’s laptop, but are also able to exploit thousands of processor cores on state-of-the-art supercomputers. The engine is able to dynamically increase the accuracy of the simulation using adaptive mesh refinement where required. Due to the robustness and shock capturing abilities of ExaHyPE’s numerical methods, users of the engine can simulate linear and non-linear hyperbolic PDEs with very high accuracy. Users can tailor the engine to their particular PDE by specifying evolved quantities, fluxes, and source terms. A complete simulation code for a new hyperbolic PDE can often be realised within a few hours — a task that, traditionally, can take weeks, months, often years for researchers starting from scratch. In this paper, we showcase ExaHyPE’s workflow and capabilities through real-world scenarios from our two main application areas: seismology and astrophysics

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ‘large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ‘smaller’ arteries and veins of radii ≥ 50 μ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
    corecore