83 research outputs found

    An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries

    Get PDF
    Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al

    Optimization of Suture-Free Laser-Assisted Vessel Repair by Solder-Doped Electrospun Poly(ε-caprolactone) Scaffold

    Get PDF
    Poor welding strength constitutes an obstacle in the clinical employment of laser-assisted vascular repair (LAVR) and anastomosis. We therefore investigated the feasibility of using electrospun poly(ε-caprolactone) (PCL) scaffold as reinforcement material in LAVR of medium-sized vessels. In vitro solder-doped scaffold LAVR (ssLAVR) was performed on porcine carotid arteries or abdominal aortas using a 670-nm diode laser, a solder composed of 50% bovine serum albumin and 0.5% methylene blue, and electrospun PCL scaffolds. The correlation between leaking point pressures (LPPs) and arterial diameter, the extent of thermal damage, structural and mechanical alterations of the scaffold following ssLAVR, and the weak point were investigated. A strong negative correlation existed between LPP and vessel diameter, albeit LPP (484 ± 111 mmHg) remained well above pathophysiological pressures. Histological analysis revealed that thermal damage extended into the medial layer with a well-preserved internal elastic lamina and endothelial cells. Laser irradiation of PCL fibers and coagulation of solder material resulted in a strong and stiff scaffold. The weak point of the ssLAVR modality was predominantly characterized by cohesive failure. In conclusion, ssLAVR produced supraphysiological LPPs and limited tissue damage. Despite heat-induced structural/mechanical alterations of the scaffold, PCL is a suitable polymer for weld reinforcement in medium-sized vessel ssLAVR

    Accuracy, realism and general applicability of European forest models

    Get PDF
    Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models\u27 performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe\u27s common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests

    Accuracy, realism and general applicability of European forest models

    Get PDF
    Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.Peer reviewe

    The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC), to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide) in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments.</p> <p>Methods/Design</p> <p>The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older) with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control") for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP < 140 mm Hg and DBP < 90 mm Hg. Additional antihypertensives are added to achieve this goal if needed. Eligible participants are those with hypertension, defined as a blood pressure 140/90 mm Hg or greater, early cognitive impairment without dementia defined (10 or less out of 15 on the executive clock draw test or 1 standard deviation below the mean on the immediate memory subtest of the repeatable battery for the assessment of neuropsychological status and Mini-Mental-Status-exam >20 and without clinical diagnosis of dementia or Alzheimer's disease). Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives), 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory), cerebral blood flow, and carbon dioxide cerebral vasoreactivity.</p> <p>Discussion</p> <p>The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the threshold of dementia. Success of this trial will offer new therapeutic application of antihypertensives that inhibit the renin angiotensin system and new insights in the role of this system in aging.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00605072</p

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes

    Reproducibility of Transcranial Doppler ultrasound in the middle cerebral artery

    Get PDF
    Abstract Background Transcranial Doppler ultrasound remains the only imaging modality that is capable of real-time measurements of blood flow velocity and microembolic signals in the cerebral circulation. We here assessed the repeatability and reproducibility of transcranial Doppler ultrasound in healthy volunteers and patients with symptomatic carotid artery stenosis. Methods Between March and August 2017, we recruited 20 healthy volunteers and 20 patients with symptomatic carotid artery stenosis. In a quiet temperature-controlled room, two 1-h transcranial Doppler measurements of blood flow velocities and microembolic signals were performed sequentially on the same day (within-day repeatability) and a third 7–14 days later (between-day reproducibility). Levels of agreement were assessed by interclass correlation co-efficient. Results In healthy volunteers (31±9 years, 11 male), within-day repeatability of Doppler measurements were 0.880 (95% CI 0.726–0.950) for peak velocity, 0.867 (95% CI 0.700–0.945) for mean velocity, and 0.887 (95% CI 0.741–0.953) for end-diastolic velocity. Between-day reproducibility was similar but lower: 0.777 (95% CI 0.526–0.905), 0.795 (95% CI 0.558–0.913), and 0.674 (95% CI 0.349–0.856) respectively. In patients (72±11 years, 11 male), within-day repeatability of Doppler measurements were higher: 0.926 (95% CI 0.826–0.970) for peak velocity, 0.922 (95% CI 0.817–0.968) for mean velocity, and 0.868 (95% CI 0.701–0.945) for end-diastolic velocity. Similarly, between-day reproducibility revealed lower values: 0.800 (95% CI 0.567–0.915), 0.786 (95% CI 0.542–0.909), and 0.778 (95% CI 0.527–0.905) respectively. In both cohorts, the intra-observer Bland Altman analysis demonstrated acceptable mean measurement differences and limits of agreement between series of middle cerebral artery velocity measurements with very few outliers. In patients, the carotid stenoses were 30–40% (n = 9), 40–50% (n = 6), 50–70% (n = 3) and > 70% (n = 2). No spontaneous embolisation was detected in either of the groups. Conclusions Transcranial Doppler generates reproducible data regarding the middle cerebral artery velocities. However, larger studies are needed to validate its clinical applicability. Trial registration ClinicalTrial.gov (ID NCT 03050567), retrospectively registered on 15/05/2017

    Sickle Cell Disease and Transcranial Doppler Imaging

    No full text
    corecore