22 research outputs found

    A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    Get PDF
    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented

    New Results on the Submillimeter Polarization Spectrum of the Orion Molecular Cloud

    Get PDF
    We have used the SHARP polarimeter at the Caltech Submillimeter Observatory to map the polarization at wavelengths of 350 and 450 micron in a ~2 x 3 arcmin region of the Orion Molecular Cloud. The map covers the brightest region of the OMC-1 ridge including the Kleinmann-Low (KL) nebula and the submillimeter source Orion-south. The ratio of 450-to-350 micron polarization is ~ 1.3 +/- 0.3 in the outer parts of the cloud and drops by a factor of 2 towards KL. The outer cloud ratio is consistent with measurements in other clouds at similar wavelengths and confirms previous measurements placing the minimum of the polarization ratio in dusty molecular clouds at a wavelength ~ 350 micron.Comment: 7 pages, 6 figures, submitted to ApJ Let

    Stringent Limits on the Polarized Submillimeter Emission from Protoplanetary Disks

    Full text link
    We present arcsecond-resolution Submillimeter Array (SMA) polarimetric observations of the 880 um continuum emission from the protoplanetary disks around two nearby stars, HD 163296 and TW Hydrae. Although previous observations and theoretical work have suggested that a 2-3% polarization fraction should be common for the millimeter continuum emission from such disks, we detect no polarized continuum emission above a 3-sigma upper limit of 7 mJy in each arcsecond-scale beam, or <1% in integrated continuum emission. We compare the SMA upper limits with the predictions from the exploratory Cho & Lazarian (2007) model of polarized emission from T Tauri disks threaded by toroidal magnetic fields, and rule out their fiducial model at the ~10-sigma level. We explore some potential causes for this discrepancy, focusing on model parameters that describe the shape, magnetic field alignment, and size distribution of grains in the disk. We also investigate related effects like the magnetic field strength and geometry, scattering off of large grains, and the efficiency of grain alignment, including recent advances in grain alignment theory, which are not considered in the fiducial model. We discuss the impact each parameter would have on the data and determine that the suppression of polarized emission plausibly arises from rounding of large grains, reduced efficiency of grain alignment with the magnetic field, and/or some degree of magnetic field tangling (perhaps due to turbulence). A poloidal magnetic field geometry could also reduce the polarization signal, particularly for a face-on viewing geometry like the TW Hya disk. The data provided here offer the most stringent limits to date on the polarized millimeter-wavelength emission from disks around young stars.Comment: 15 pages, 6 figures, accepted for publication in Ap

    The Gray Needle: Large Grains in the HD 15115 Debris Disk from LBT/PISCES/Ks and LBTI/LMIRcam/L' Adaptive Optics Imaging

    Full text link
    We present diffraction-limited \ks band and \lprime adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At \ks band the disk is detected at signal-to-noise per resolution element (SNRE) \about 3-8 from \about 1-2\fasec 5 (45-113 AU) on the western side, and from \about 1.2-2\fasec 1 (63-90 AU) on the east. At \lprime the disk is detected at SNRE \about 2.5 from \about 1-1\fasec 45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 \microns . At both wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at \ks band, but not at \lprime . The surface brightness at \ks band declines inside 1\asec (\about 45 AU), which may be indicative of a gap in the disk near 1\asec. The \ks - \lprime disk color, after removal of the stellar color, is mostly grey for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 \microns -sized grains on the east side and 1-10 \microns dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium.Comment: Apj-accepted March 27 2012; minor correction

    First Light LBT AO Images of HR 8799 bcde at 1.65 and 3.3 Microns: New Discrepancies between Young Planets and Old Brown Dwarfs

    Full text link
    As the only directly imaged multiple planet system, HR 8799 provides a unique opportunity to study the physical properties of several planets in parallel. In this paper, we image all four of the HR 8799 planets at H-band and 3.3 microns with the new LBT adaptive optics system, PISCES, and LBTI/LMIRCam. Our images offer an unprecedented view of the system, allowing us to obtain H and 3.3$ micron photometry of the innermost planet (for the first time) and put strong upper-limits on the presence of a hypothetical fifth companion. We find that all four planets are unexpectedly bright at 3.3 microns compared to the equilibrium chemistry models used for field brown dwarfs, which predict that planets should be faint at 3.3 microns due to CH4 opacity. We attempt to model the planets with thick-cloudy, non-equilibrium chemistry atmospheres, but find that removing CH4 to fit the 3.3 micron photometry increases the predicted L' (3.8 microns) flux enough that it is inconsistent with observations. In an effort to fit the SED of the HR 8799 planets, we construct mixtures of cloudy atmospheres, which are intended to represent planets covered by clouds of varying opacity. In this scenario, regions with low opacity look hot and bright, while regions with high opacity look faint, similar to the patchy cloud structures on Jupiter and L/T transition brown-dwarfs. Our mixed cloud models reproduce all of the available data, but self-consistent models are still necessary to demonstrate their viability.Comment: Accepted to Ap

    The Hertz-VPM Polarimeter and Applications of Multiwavelength Polarimetry

    No full text
    corecore