27 research outputs found
Escaping Local Optima Using Crossover with Emergent Diversity
Population diversity is essential for avoiding premature
convergence in Genetic Algorithms and for the effective
use of crossover. Yet the dynamics of how diversity emerges in
populations are not well understood. We use rigorous run time
analysis to gain insight into population dynamics and Genetic
Algorithm performance for the (μ+1) Genetic Algorithm and the
Jump test function. We show that the interplay of crossover
followed by mutation may serve as a catalyst leading to a
sudden burst of diversity. This leads to significant improvements
of the expected optimisation time compared to mutation-only
algorithms like the (1+1) Evolutionary Algorithm. Moreover,
increasing the mutation rate by an arbitrarily small constant
factor can facilitate the generation of diversity, leading to even
larger speedups. Experiments were conducted to complement our
theoretical findings and further highlight the benefits of crossover
on the function class
The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis
In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate
marginal distribution algorithm (UMDA) needs time exponential in the parent
populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They
conclude from this result that univariate EDAs have difficulties with deception
and epistasis.
In this work, we show that this negative finding is caused by an unfortunate
choice of the parameters of the UMDA. When the population sizes are chosen
large enough to prevent genetic drift, then the UMDA optimizes the DLB problem
with high probability with at most fitness
evaluations. Since an offspring population size of order
can prevent genetic drift, the UMDA can solve the DLB problem with fitness evaluations. In contrast, for classic evolutionary algorithms no
better run time guarantee than is known (which we prove to be tight
for the EA), so our result rather suggests that the UMDA can cope
well with deception and epistatis.
From a broader perspective, our result shows that the UMDA can cope better
with local optima than evolutionary algorithms; such a result was previously
known only for the compact genetic algorithm. Together with the lower bound of
Lehre and Nguyen, our result for the first time rigorously proves that running
EDAs in the regime with genetic drift can lead to drastic performance losses
Preoperative quantification of aortic valve stenosis: comparison of 64-slice computed tomography with transesophageal and transthoracic echocardiography and size of implanted prosthesis
Precise measurements of aortic complex diameters are essential for preoperative examinations of patients with aortic stenosis (AS) scheduled for aortic valve (AV) replacement. We aimed to prospectively compare the accuracy of transthoracic echocardiography (TTE), transoesophageal echocardiography (TEE) and multi-slice computed tomography (MSCT) measurements of the AV complex and to analyze the role of the multi-modality aortic annulus diameter (AAd) assessment in the selection of the optimal prosthesis to be implanted in patients surgically treated for degenerative AS. 20 patients (F/M: 3/17; age: 69 ± 6.5 years) with severe degenerative AS were enrolled into the study. TTE, TEE and MSCT including AV calcium score (AVCS) assessment were performed in all patients. The values of AAd obtained in the long AV complex axis (TTE, TEE, MSCT) and in multiplanar perpendicular imaging (MSCT) were compared to the size of implanted prosthesis. The mean AAd was 24 ± 3.6 mm using TTE, 26 ± 4.2 mm using TEE, and 26.9 ± 3.2 in MSCT (P = 0.04 vs. TTE). The mean diameter of the left ventricle out-flow tract in TTE (19.9 ± 2.7 mm) and TEE (19.5 ± 2.7 mm) were smaller than in MSCT (24.9 ± 3.3 mm, P < 0.001 for both). The mean size of implanted prosthesis (22.2 ± 2.3 mm) was significantly smaller than the mean AAd measured by TTE (P = 0.0039), TEE (P = 0.0004), and MSCT (P < 0.0001). The implanted prosthesis size correlated significantly to the AAd: r = 0.603, P = 0.005 for TTE, r = 0.592, P = 0.006 for TEE, and r = 0.791, P < 0.001 for MSCT. Obesity and extensive valve calcification (AV calcium score ≥ 3177Ag.U.) were identified as potent factors that caused a deterioration of both TTE and MSCT performance. The accuracy of AAd measurements in TEE was only limited by AV calcification. In multivariate regression analysis the mean value of the minimum and maximum AAd obtained in MSCT-multiplanar perpendicular imaging was an independent factor (r = 0.802, P < 0.0001) predicting the size of implanted prosthesis. In patients with AS echocardiography remains the main diagnostics tool in clinical practice. MSCT as a 3-dimentional modality allows for accurate measurement of entire AV complex and facilitates optimal matching of prosthesis size
Selbstanordnung von Saturnpartikeln
In dieser Arbeit werden verschiedene Verfahren vorgestellt, um Saturnpartikel herzustellen. Es wird die Selbstanordnung von erfolgreich hergestellten Saturnpartikeln untersucht.
Im ersten Teil werden durch ein äquatoriales Ätzverfahren Saturnpartikel mit hydrophoben Kappen sowie einem hydrophilen Gürtel aus hydrophob beschichteten sphärischen Partikeln hergestellt. Mit einer Monolage dieser Saturnpartikel können Membranen aus Wasser (sogenannte Pickering-Membranen) stabilisiert werden. Die Pickering-Membranen sind über einen Zeitraum von mehreren Tagen stabil und lassen Permeabilitätsuntersuchungen zu. Diese Pickering-Membranen können als ein Spezialfall einer Supported Liquid Membrane angesehen werden. Es werden die Permeabilitätsunterschiede von Kohlenstoffdioxid gegen Luft sowie Luft gegen Schwefelhexafluorid betrachtet. Die resultierenden Werte stimmen in zufriedenstellender Weise mit theoretisch – nach dem für Supported Liquid Membranes gängigen Löslichkeits-Diffusionsmodell – berechneten Werten überein.
Im zweiten Teil werden Partikel über Float-casting in Membranen eingebettet und dadurch rundherum – nicht jedoch an den Polkappen – äquatorial maskiert. Anschließend wird Gold aufgedampft und die maskierende Membran entfernt, sodass Saturnpartikel zurück bleiben. Die Saturnpartikel weisen hydrophile Kappen sowie einen hydrophoben Gürtel auf. An einer Öl-Wasser-Grenzfläche kommt es zu einer Selbstanordnung dieser Saturnpartikel durch Verknüpfung ihrer Gürtel in Form von zweidimensionalen Netzwerken. In diesen Netzwerken können einfache geometrische Formen gefunden werden. Es ist dabei nicht möglich, die Partikel durch einen Krafteintrag in einem flächendeckenden Muster zu organisieren. Die Untersuchung erfolgt durch konfokale Fluoreszenzspektroskopie. Die Goldkappen der Saturnpartikel zeigen ein Fluoreszenzsignal.:Bibliographische Beschreibung und Referat
Danksagung
Inhaltsverzeichnis
Abkürzungsverzeichnis
1 Einleitung
2 Theoretischer Teil
2.1 Januspartikel
2.1.1 Herstellungsmöglichkeiten
2.1.1.1 Herstellung durch Oberflächenmodifizierung
2.1.1.2 Phasenseparation zweier nicht mischbarer Flüssigkeiten
2.1.1.3 Herstellung aus Bausteinen über Selbstanordnung
2.1.2 Anwendung
2.2 Saturnpartikel
2.2.1 Herstellung durch Oberflächenmodifizierung
2.2.2 Herstellung durch Phasenseparation von nicht mischbaren Flüssigkeiten
2.2.3 Herstellung aus Bausteinen über Selbstanordnung
2.3 Partikelstabilisierte Membranen
2.4 Aktuelle Fortschritte in der Gastrennung Mittels Gestützter Flüssigmembranen
2.4.1 Gestützte Flüssigmembranen (Supported Liquid Membranes)
2.4.2 Flüssigkeiten
2.4.2.1 Nicht-Ionische Flüssigkeiten
2.4.2.2 Ionische Flüssigkeiten
2.4.2.3 Stark Eutektische Lösemittel
2.4.3 Matrixmaterialien
2.4.4 Träger
2.4.5 Trennaufgaben
2.4.5.1 CO2/N2
2.4.5.2 CO2/CH4
2.4.5.3 Alken/Alkan
2.4.5.4 Andere Trennaufgaben
2.4.6 Einfluss von Temperatur und Druck
2.4.7 Stabilität
2.4.8 Simulationen
2.4.9 Zusammenfassung und Ausblick des Kapitels
2.5 Grenzflächen
2.5.1 Grenzflächenspannung
2.5.2 Kontaktwinkel und Benetzung
2.5.3 Partikelassistierte Benetzung
2.5.3.1 Float-casting
2.6 Modifizierung von Oberflächen durch Selbstorganisierende Monoschichten
2.6.1 Silanisierung von Oberflächen
2.6.2 Thiolisierung von Oberflächen
2.7 Fluoreszenz
2.8 Netzwerkanalyse
3 Ergebnisse und Diskussion
3.1 Herstellung von Saturnpartikeln durch schrittweises Einsinken in ein Polymer
3.2 Herstellung von Saturnpartikeln mit geätztem Ring mit Ätzzelle
3.2.1 Beschreibung der Ätzzelle
3.2.2 Optimierung des Verfahrens
3.2.2.1 Einlegen der Thermoplastischen Folien in Ethanol
3.2.2.2 Einführung eines Luer-Lock-Systems
3.2.2.3 Erhöhung der Pumpgeschwindigkeit bei der Reinigung
3.2.3 Beschreibung der erhaltenen Saturnpartikel
3.3 Pickering-Membranen stabilisiert durch Saturnpartikel mit geätztem Ring
3.3.1 Permeabilitätsuntersuchungen von Pickering-Membranen
3.3.1.1 Theoretische Permeanzen
3.3.1.2 Experimentelle Permeanzen
3.4 Herstellung von Saturnpartikeln durch Beschichtung mit Gold und graduelles
Ätzen
3.5 Herstellung von Saturnpartikeln über Float-casting
3.5.1 Herstellung von Saturnpartikeln über Float-casting: Glaspartikel
3.5.2 Herstellung von Saturnpartikeln über Float-casting: Siliziumdioxidpartikel
3.5.3 Herstellung von Saturnpartikeln über Float-casting: Silsesquioxanpartikel
3.5.3.1 Bestimmung der Schichtdicke des Goldes
3.5.3.2 Membranherstellung mit Silsesquioxanpartikel über Floatcasting
3.5.3.3 Oberflächenmodifizierung der Goldkappen
3.6 Selbstanordnung von Saturnpartikeln unter dem Konfokalmikroskop
3.6.1 Erste Anordnungen
3.6.2 Einsatz von Zinkbromidlösungen
3.6.3 Fluoreszenz von Saturnpartikeln bei verschiedenen Flüssigkeitsgemischen
3.6.4 Fluoreszenz der Goldkappen
3.6.5 Flüssigkeitsmeniskus in den Probengefäßen
3.6.6 Messung an der Flüssig-Flüssig-Grenzfläche
3.6.7 Schallunterstützte Anordnung
3.6.8 Mathematische Beschreibung der Saturnpartikelnetzwerke
4 Zusammenfassung und Ausblick
5 Experimenteller Teil
5.1 Eingesetzte Chemikalien
5.2 Verwendete Geräte
5.3 Partikelsynthese und -oberflächenmodifikation
5.3.1 Herstellung von Siliziumdioxidpartikeln im Submikrometermaßstab
5.3.2 Herstellung von Polystyrolpartikeln im Mikrometermaßstab
5.3.3 Oberflächenmodifizierung von Glaspartikeln mit Silanen
5.4 Saturnpartikel durch schrittweises Einsinken in ein Polymer
5.5 Saturnpartikel durch Beschichtung mit Gold und graduelles Ätzen
5.6 Saturnpartikel mit geätztem Ring mit Ätzzelle
5.6.1 Pickering-Membranen in einem Rollrandgläschen
5.6.2 Pickering-Membranen in der Permeationsapparatur und Permeationsuntersuchungen
5.7 Saturnpartikeln über Float-Casting
5.7.1 Glaspartikel, Supelco Glass Beads
5.7.2 Siliziumdioxidpartikel, Stöberpartikel
5.7.3 Silsesquioxanpartikel, Tospearls
5.8 Kontaktwinkelmessungen
5.8.1 Kontaktwinkel von Partikeln
5.8.2 Kontaktwinkel von planaren Substraten
5.9 Konfokalmikroskopieaufnahmen
5.9.1 Fluoreszenzlösungen
5.9.2 Konfokalmikroskopieprobengefäße
5.9.3 Subwoofer
5.9.4 Messungen am Konfokalmikroskop
5.10 Rasterelektronenmikroskopieaufnahmen
5.11 Plasmaätzen
Literaturverzeichnis
Selbstständigkeitserklärung
Lebenslauf
Veröffentlichungen und Tagungsbeiträg
Selbstanordnung von Saturnpartikeln
In dieser Arbeit werden verschiedene Verfahren vorgestellt, um Saturnpartikel herzustellen. Es wird die Selbstanordnung von erfolgreich hergestellten Saturnpartikeln untersucht.
Im ersten Teil werden durch ein äquatoriales Ätzverfahren Saturnpartikel mit hydrophoben Kappen sowie einem hydrophilen Gürtel aus hydrophob beschichteten sphärischen Partikeln hergestellt. Mit einer Monolage dieser Saturnpartikel können Membranen aus Wasser (sogenannte Pickering-Membranen) stabilisiert werden. Die Pickering-Membranen sind über einen Zeitraum von mehreren Tagen stabil und lassen Permeabilitätsuntersuchungen zu. Diese Pickering-Membranen können als ein Spezialfall einer Supported Liquid Membrane angesehen werden. Es werden die Permeabilitätsunterschiede von Kohlenstoffdioxid gegen Luft sowie Luft gegen Schwefelhexafluorid betrachtet. Die resultierenden Werte stimmen in zufriedenstellender Weise mit theoretisch – nach dem für Supported Liquid Membranes gängigen Löslichkeits-Diffusionsmodell – berechneten Werten überein.
Im zweiten Teil werden Partikel über Float-casting in Membranen eingebettet und dadurch rundherum – nicht jedoch an den Polkappen – äquatorial maskiert. Anschließend wird Gold aufgedampft und die maskierende Membran entfernt, sodass Saturnpartikel zurück bleiben. Die Saturnpartikel weisen hydrophile Kappen sowie einen hydrophoben Gürtel auf. An einer Öl-Wasser-Grenzfläche kommt es zu einer Selbstanordnung dieser Saturnpartikel durch Verknüpfung ihrer Gürtel in Form von zweidimensionalen Netzwerken. In diesen Netzwerken können einfache geometrische Formen gefunden werden. Es ist dabei nicht möglich, die Partikel durch einen Krafteintrag in einem flächendeckenden Muster zu organisieren. Die Untersuchung erfolgt durch konfokale Fluoreszenzspektroskopie. Die Goldkappen der Saturnpartikel zeigen ein Fluoreszenzsignal.:Bibliographische Beschreibung und Referat
Danksagung
Inhaltsverzeichnis
Abkürzungsverzeichnis
1 Einleitung
2 Theoretischer Teil
2.1 Januspartikel
2.1.1 Herstellungsmöglichkeiten
2.1.1.1 Herstellung durch Oberflächenmodifizierung
2.1.1.2 Phasenseparation zweier nicht mischbarer Flüssigkeiten
2.1.1.3 Herstellung aus Bausteinen über Selbstanordnung
2.1.2 Anwendung
2.2 Saturnpartikel
2.2.1 Herstellung durch Oberflächenmodifizierung
2.2.2 Herstellung durch Phasenseparation von nicht mischbaren Flüssigkeiten
2.2.3 Herstellung aus Bausteinen über Selbstanordnung
2.3 Partikelstabilisierte Membranen
2.4 Aktuelle Fortschritte in der Gastrennung Mittels Gestützter Flüssigmembranen
2.4.1 Gestützte Flüssigmembranen (Supported Liquid Membranes)
2.4.2 Flüssigkeiten
2.4.2.1 Nicht-Ionische Flüssigkeiten
2.4.2.2 Ionische Flüssigkeiten
2.4.2.3 Stark Eutektische Lösemittel
2.4.3 Matrixmaterialien
2.4.4 Träger
2.4.5 Trennaufgaben
2.4.5.1 CO2/N2
2.4.5.2 CO2/CH4
2.4.5.3 Alken/Alkan
2.4.5.4 Andere Trennaufgaben
2.4.6 Einfluss von Temperatur und Druck
2.4.7 Stabilität
2.4.8 Simulationen
2.4.9 Zusammenfassung und Ausblick des Kapitels
2.5 Grenzflächen
2.5.1 Grenzflächenspannung
2.5.2 Kontaktwinkel und Benetzung
2.5.3 Partikelassistierte Benetzung
2.5.3.1 Float-casting
2.6 Modifizierung von Oberflächen durch Selbstorganisierende Monoschichten
2.6.1 Silanisierung von Oberflächen
2.6.2 Thiolisierung von Oberflächen
2.7 Fluoreszenz
2.8 Netzwerkanalyse
3 Ergebnisse und Diskussion
3.1 Herstellung von Saturnpartikeln durch schrittweises Einsinken in ein Polymer
3.2 Herstellung von Saturnpartikeln mit geätztem Ring mit Ätzzelle
3.2.1 Beschreibung der Ätzzelle
3.2.2 Optimierung des Verfahrens
3.2.2.1 Einlegen der Thermoplastischen Folien in Ethanol
3.2.2.2 Einführung eines Luer-Lock-Systems
3.2.2.3 Erhöhung der Pumpgeschwindigkeit bei der Reinigung
3.2.3 Beschreibung der erhaltenen Saturnpartikel
3.3 Pickering-Membranen stabilisiert durch Saturnpartikel mit geätztem Ring
3.3.1 Permeabilitätsuntersuchungen von Pickering-Membranen
3.3.1.1 Theoretische Permeanzen
3.3.1.2 Experimentelle Permeanzen
3.4 Herstellung von Saturnpartikeln durch Beschichtung mit Gold und graduelles
Ätzen
3.5 Herstellung von Saturnpartikeln über Float-casting
3.5.1 Herstellung von Saturnpartikeln über Float-casting: Glaspartikel
3.5.2 Herstellung von Saturnpartikeln über Float-casting: Siliziumdioxidpartikel
3.5.3 Herstellung von Saturnpartikeln über Float-casting: Silsesquioxanpartikel
3.5.3.1 Bestimmung der Schichtdicke des Goldes
3.5.3.2 Membranherstellung mit Silsesquioxanpartikel über Floatcasting
3.5.3.3 Oberflächenmodifizierung der Goldkappen
3.6 Selbstanordnung von Saturnpartikeln unter dem Konfokalmikroskop
3.6.1 Erste Anordnungen
3.6.2 Einsatz von Zinkbromidlösungen
3.6.3 Fluoreszenz von Saturnpartikeln bei verschiedenen Flüssigkeitsgemischen
3.6.4 Fluoreszenz der Goldkappen
3.6.5 Flüssigkeitsmeniskus in den Probengefäßen
3.6.6 Messung an der Flüssig-Flüssig-Grenzfläche
3.6.7 Schallunterstützte Anordnung
3.6.8 Mathematische Beschreibung der Saturnpartikelnetzwerke
4 Zusammenfassung und Ausblick
5 Experimenteller Teil
5.1 Eingesetzte Chemikalien
5.2 Verwendete Geräte
5.3 Partikelsynthese und -oberflächenmodifikation
5.3.1 Herstellung von Siliziumdioxidpartikeln im Submikrometermaßstab
5.3.2 Herstellung von Polystyrolpartikeln im Mikrometermaßstab
5.3.3 Oberflächenmodifizierung von Glaspartikeln mit Silanen
5.4 Saturnpartikel durch schrittweises Einsinken in ein Polymer
5.5 Saturnpartikel durch Beschichtung mit Gold und graduelles Ätzen
5.6 Saturnpartikel mit geätztem Ring mit Ätzzelle
5.6.1 Pickering-Membranen in einem Rollrandgläschen
5.6.2 Pickering-Membranen in der Permeationsapparatur und Permeationsuntersuchungen
5.7 Saturnpartikeln über Float-Casting
5.7.1 Glaspartikel, Supelco Glass Beads
5.7.2 Siliziumdioxidpartikel, Stöberpartikel
5.7.3 Silsesquioxanpartikel, Tospearls
5.8 Kontaktwinkelmessungen
5.8.1 Kontaktwinkel von Partikeln
5.8.2 Kontaktwinkel von planaren Substraten
5.9 Konfokalmikroskopieaufnahmen
5.9.1 Fluoreszenzlösungen
5.9.2 Konfokalmikroskopieprobengefäße
5.9.3 Subwoofer
5.9.4 Messungen am Konfokalmikroskop
5.10 Rasterelektronenmikroskopieaufnahmen
5.11 Plasmaätzen
Literaturverzeichnis
Selbstständigkeitserklärung
Lebenslauf
Veröffentlichungen und Tagungsbeiträg
2011 Belize Biospeleology Expedition Report
We report on preliminary findings from the first biospeleological expedition undertaken between 6 and 19 April 2011 in caves of the Toledo District, southern Belize. Also included is a review of the present state of knowledge of subterranean invertebrates in Belize, with no prior data being available for the Toledo District.
During the April 2011 expedition, we sampled more than 1,150 invertebrates, representing more than 80 unique taxa, recorded from 7 caves in the Toledo District of Belize. This material includes a number of species already determined to be new to science, including various arachnids, crustaceans, and insects.
The findings of this study form the beginnings of a foundation for future work, which can help inform decision-making regarding cave resources. Caves in Belize are an important socioeconomic resource – they support ecotourism, harbor unique archeological resources. In serving as conduits for water, organic materials, and contaminants, these caves also play important roles within the landscape. The data from the present study, and future biospeleological work will provide land managers and agency personnel with better knowledge of important cave resources in Belize.Subterranean Ecology Institute; NSS International Exploration Grantunpublishednot peer reviewe
Fast building block assembly by majority vote crossover
Different works have shown how crossover can help with building block assembly. Typically, crossover might get lucky to select good building blocks from each parent, but these lucky choices are usually rare. In this work we consider a crossover operator which works on three parent individuals. In each component, the offspring inherits the value present in the majority of the parents; thus, we call this crossover operator majority vote. We show that, if good components are sufficiently prevalent in the individuals, majority vote creates an optimal individual with high probability. Furthermore, we show that this process can be amplified: as long as components are good independently and with probability at least 1/2+delta, we require only O(log 1/delta + log log n) successive stages of majority vote to create an optimal individual with high probability! We show how this applies in two scenarios. The first scenario is the Jump test function. With sufficient diversity, we get an optimization time of O(n log n) even for jump sizes as large as O(n(1/2-epsilon)). Our second scenario is a family of vertex cover instances. Majority vote optimizes this family efficiently, while local searches fail and only highly specialized two-parent crossovers are successful.Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank Neumann, Martin Schirnec