72 research outputs found
Learning from the Success of MPI
The Message Passing Interface (MPI) has been extremely successful as a
portable way to program high-performance parallel computers. This success has
occurred in spite of the view of many that message passing is difficult and
that other approaches, including automatic parallelization and directive-based
parallelism, are easier to use. This paper argues that MPI has succeeded
because it addresses all of the important issues in providing a parallel
programming model.Comment: 12 pages, 1 figur
A Calibration of NICMOS Camera 2 for Low Count-Rates
NICMOS 2 observations are crucial for constraining distances to most of the
existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs,
these observations involve long exposure times and low count rates. Reciprocity
failure is known to exist in HgCdTe devices and a correction for this effect
has already been implemented for high and medium count-rates. However
observations at faint count-rates rely on extrapolations. Here instead, we
provide a new zeropoint calibration directly applicable to faint sources. This
is obtained via inter-calibration of NIC2 F110W/F160W with WFC3 in the low
count-rate regime using z ~ 1 elliptical galaxies as tertiary calibrators.
These objects have relatively simple near-IR SEDs, uniform colors, and their
extended nature gives superior signal-to-noise at the same count rate than
would stars. The use of extended objects also allows greater tolerances on PSF
profiles. We find ST magnitude zeropoints (after the installation of the NICMOS
cooling system, NCS) of 25.296 +- 0.022 for F110W and 25.803 +- 0.023 for
F160W, both in agreement with the calibration extrapolated from count-rates
1,000 times larger (25.262 and 25.799). Before the installation of the NCS, we
find 24.843 +- 0.025 for F110W and 25.498 +- 0.021 for F160W, also in agreement
with the high-count-rate calibration (24.815 and 25.470). We also check the
standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at
different colors and find mild tension for WFC3, limiting the accuracy of the
zeropoints. To avoid human bias, our cross-calibration was "blinded" in that
the fitted zeropoint differences were hidden until the analysis was finalized.Comment: Accepted for Publication in the Astronomical Journal. New version
contains added referenc
A characteristics framework for Semantic Information Systems Standards
Semantic Information Systems (IS) Standards play a critical role in the development of the networked economy. While their importance is undoubted by all stakeholders—such as businesses, policy makers, researchers, developers—the current state of research leaves a number of questions unaddressed. Terminological confusion exists around the notions of “business semantics”, “business-to-business interoperability”, and “interoperability standards” amongst others. And, moreover, a comprehensive understanding about the characteristics of Semantic IS Standards is missing. The paper addresses this gap in literature by developing a characteristics framework for Semantic IS Standards. Two case studies are used to check the applicability of the framework in a “real-life” context. The framework lays the foundation for future research in an important field of the IS discipline and supports practitioners in their efforts to analyze, compare, and evaluate Semantic IS Standard
Evolution of organic carbon in the laboratory oxidation of biomass-burning emissions
Biomass burning (BB) is a major source of reactive organic carbon
into the atmosphere. Once in the atmosphere, these organic BB emissions, in
both the gas and particle phases, are subject to atmospheric oxidation,
though the nature and impact of the chemical transformations are not
currently well constrained. Here we describe experiments carried out as part
of the FIREX FireLab campaign, in which smoke from the combustion of fuels
typical of the western United States was sampled into an environmental chamber and
exposed to high concentrations of OH, to simulate the equivalent of up to
2 d of atmospheric oxidation. The evolution of the organic mixture was
monitored using three real-time time-of-flight mass spectrometric
instruments (a proton transfer reaction mass spectrometer, an iodide
chemical ionization mass spectrometer, and an aerosol mass spectrometer),
providing measurements of both individual species and ensemble properties of
the mixture. The combined measurements from these instruments achieve a
reasonable degree of carbon closure (within 15 %–35 %), indicating that most
of the reactive organic carbon is measured by these instruments. Consistent
with our previous studies of the oxidation of individual organic species,
atmospheric oxidation of the complex organic mixture leads to the formation
of species that on average are smaller and more oxidized than those in the
unoxidized emissions. In addition, the comparison of mass spectra from the
different fuels indicates that the oxidative evolution of BB emissions
proceeds largely independent of fuel type, with different fresh smoke
mixtures ultimately converging into a common, aged distribution of gas-phase
compounds. This distribution is characterized by high concentrations of
several small, volatile oxygenates, formed from fragmentation reactions, as
well as a complex pool of many minor oxidized species and secondary organic
aerosol, likely formed via functionalization processes.</p
Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US Environmental Protection Agency (EPA) projects 2013-2025 decreases in anthropogenic emissions of 34 % for NOx (leading to a 7 % increase in isoprene SOA) and 48 % for SO2 (35 % decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls
Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013
We present measurements of highly oxidized multifunctional molecules (HOMs) detected in the gas phase using a high-resolution time-of flight chemical ionization mass spectrometer with nitrate reagent ion (NO3- CIMS). The measurements took place during the 2013 Southern Oxidant and Aerosol Study (SOAS 2013) at a forest site in Alabama, where emissions were dominated by biogenic volatile organic compounds (BVOCs). Primary BVOC emissions were represented by isoprene mixed with various terpenes, making it a unique sampling location compared to previous NO3- CIMS deployments in monoterpene-dominated environments. During SOAS 2013, the NO3- CIMS detected HOMs with oxygen-to-carbon (O:C) ratios between 0.5 and 1.4 originating from both isoprene (C-5) and monoterpenes (C-10) as well as hundreds of additional HOMs with carbon numbers between C-3 and C-20. We used positive matrix factorization (PMF) to deconvolve the complex data set and extract information about classes of HOMs with similar temporal trends. This analysis revealed three isoprene-dominated and three monoterpene-dominated PMF factors. We observed significant amounts of isoprene- and monoterpene-derived organic nitrates (ONs) in most factors. The abundant presence of ONs was consistent with previous studies that have highlighted the importance of NOx-driven chemistry at the site. One of the isoprene-dominated factors had a strong correlation with SO2 plumes likely advected from nearby coal-fired power plants and was dominated by an isoprene derived ON (C5H10N2O8). These results indicate that anthropogenic emissions played a significant role in the formation of low volatility compounds from BVOC emissions in the region.Peer reviewe
Standardization as emerging content in technology education at all levels of education
Integration of standardization into different levels of technology education has surfaced as a critical issue for educational practitioners and policy makers at national and regional (APEC, EU) level. In this paper, we describe and analyze empirical data collected from 118 educational experiences and practices about technology standards and standardization in 21 countries of a regional variety. Specifically, this research examines standardization education programs these countries have implemented, and explores suggestive indications for the design and development of an educational policy for standardization. Online surveys, offline interviews, face-to-face meetings and case studies have been used to determine the way these standardization education programs are segmented and implemented in different contexts.
The findings are consolidated into a framework for standardization education. The framework presents an applicable combination of target groups (who), appropriate learning objectives (why), probable program operators (where), prospective contents modules (what), and preferred teaching methods (how). This framework may contribute to planning and implementing more inclusive standardization education programs
High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, HSO). Despite their importance, accurate prediction of MSA and HSO from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to −10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while HSO production is modestly affected. This leads to a gas-phase HSO-to-MSA ratio (HSO/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CHS(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2–10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NO effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase HSO/MSA measurements
- …