212 research outputs found

    Notch signaling in glioblastoma: a developmental drug target?

    Get PDF
    Malignant gliomas are among the most devastating tumors for which conventional therapies have not significantly improved patient outcome. Despite advances in imaging, surgery, chemotherapy and radiotherapy, survival is still less than 2 years from diagnosis and more targeted therapies are urgently needed. Notch signaling is central to the normal and neoplastic development of the central nervous system, playing important roles in proliferation, differentiation, apoptosis and cancer stem cell regulation. Notch is also involved in the regulation response to hypoxia and angiogenesis, which are typical tumor and more specifically glioblastoma multiforme (GBM) features. Targeting Notch signaling is therefore a promising strategy for developing future therapies for the treatment of GBM. In this review we give an overview of the mechanisms of Notch signaling, its networking pathways in gliomas, and discuss its potential for designing novel therapeutic approaches

    Dynamics of notch pathway expression during mouse testis post-natal development and along the spermatogenic cycle

    Get PDF
    Articles in International JournalsThe transcription and expression patterns of Notch pathway components (Notch 1–3, Delta1 and 4, Jagged1) and effectors (Hes1, Hes2, Hes5 and Nrarp) were evaluated (through RT-PCR and IHC) in the mouse testis at key moments of post-natal development, and along the adult spermatogenic cycle. Notch pathway components and effectors are transcribed in the testis and expressed in germ, Sertoli and Leydig cells, and each Notch component shows a specific cell-type and timewindow expression pattern. This expression at key testis developmental events prompt for a role of Notch signaling in prepubertal spermatogonia quiescence, onset of spermatogenesis, and regulation of the spermatogenic cycle

    Gene expression clines reveal local adaptation and associated trade-offs at a continental scale

    Get PDF
    Local adaptation, where fitness in one environment comes at a cost in another, should lead to spatial variation in trade-offs between life history traits and may be critical for population persistence. Recent studies have sought genomic signals of local adaptation, but often have been limited to laboratory populations representing two environmentally different locations of a species' distribution. We measured gene expression, as a proxy for fitness, in males of Drosophila subobscura, occupying a 20° latitudinal and 11 °C thermal range. Uniquely, we sampled six populations and studied both common garden and semi-natural responses to identify signals of local adaptation. We found contrasting patterns of investment: transcripts with expression positively correlated to latitude were enriched for metabolic processes, expressed across all tissues whereas negatively correlated transcripts were enriched for reproductive processes, expressed primarily in testes. When using only the end populations, to compare our results to previous studies, we found that locally adaptive patterns were obscured. While phenotypic trade-offs between metabolic and reproductive functions across widespread species are well-known, our results identify underlying genetic and tissue responses at a continental scale that may be responsible for this. This may contribute to understanding population persistence under environmental change

    Glucose-Insulin Therapy, Plasma Substrate Levels and Cardiac Recovery After Cardiac Ischemic Events

    Get PDF
    INTRODUCTION: The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. METHODS: In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. RESULTS: The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. DISCUSSION: Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. CONCLUSION: From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4-6 mM) and FFA (0.2-0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CAB

    Heat-Killed Trypanosoma cruzi Induces Acute Cardiac Damage and Polyantigenic Autoimmunity

    Get PDF
    Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially fatal cardiomyopathy often associated with cardiac autoimmunity. T. cruzi infection induces the development of autoimmunity to a number of antigens via molecular mimicry and other mechanisms, but the genesis and pathogenic potential of this autoimmune response has not been fully elucidated. To determine whether exposure to T. cruzi antigens alone in the absence of active infection is sufficient to induce autoimmunity, we immunized A/J mice with heat-killed T. cruzi (HKTC) emulsified in complete Freund's adjuvant, and compared the resulting immune response to that induced by infection with live T. cruzi. We found that HKTC immunization is capable of inducing acute cardiac damage, as evidenced by elevated serum cardiac troponin I, and that this damage is associated with the generation of polyantigenic humoral and cell-mediated autoimmunity with similar antigen specificity to that induced by infection with T. cruzi. However, while significant and preferential production of Th1 and Th17-associated cytokines, accompanied by myocarditis, develops in T. cruzi-infected mice, HKTC-immunized mice produce lower levels of these cytokines, do not develop Th1-skewed immunity, and lack tissue inflammation. These results demonstrate that exposure to parasite antigen alone is sufficient to induce autoimmunity and cardiac damage, yet additional immune factors, including a dominant Th1/Th17 immune response, are likely required to induce cardiac inflammation

    Biology of human hair: Know your hair to control it

    Get PDF
    Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization

    A review : a comprehensive review of soft and rigid wearable rehabilitation and assistive devices with a focus on the shoulder joint

    Get PDF
    The importance of the human upper limb role in performing daily life and personal activities is significant. Improper functioning of this organ due to neurological disorders or surgeries can greatly affect the daily activities performed by patients. This paper aims to comprehensively review soft and rigid wearable robotic devices provided for rehabilitation and assistance focusing on the shoulder joint. In the last two decades, many devices have been proposed in this regard, however, there have been a few groups whose devices have had effective therapeutic capability with acceptable clinical evidence. Also, there were not many portable, lightweight and user-friendly devices. Therefore, this comprehensive study could pave the way for achieving optimal future devices, given the growing need for these devices. According to the results, the most commonly used plan was Exoskeleton, the most commonly used actuators were electrical, and most devices were considered to be stationary and rigid. By doing these studies, the advantages and disadvantages of each method are also presented. The presented devices each have a new idea and attitude in a specific field to solve the problems of movement disorders and rehabilitation, which were in the form of prototypes, initial clinical studies and sometimes comprehensive clinical and commercial studies. These plans need more comprehensive clinical trials to become a complete and efficient plan. This article could be used by researchers to identify and evaluate the important features and strengths and weaknesses of the plans to lead to the presentation of more optimal plans in the future

    The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin

    Get PDF
    corecore