9,135 research outputs found

    On Matrix Product States for Periodic Boundary Conditions

    Full text link
    The possibility of a matrix product representation for eigenstates with energy and momentum zero of a general m-state quantum spin Hamiltonian with nearest neighbour interaction and periodic boundary condition is considered. The quadratic algebra used for this representation is generated by 2m operators which fulfil m^2 quadratic relations and is endowed with a trace. It is shown that {\em not} every eigenstate with energy and momentum zero can be written as matrix product state. An explicit counter-example is given. This is in contrast to the case of open boundary conditions where every zero energy eigenstate can be written as a matrix product state using a Fock-like representation of the same quadratic algebra.Comment: 7 pages, late

    Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

    Full text link
    We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for 3^3H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.Comment: 10 pages, 4 figure

    The Pacific Northwest story

    Get PDF
    The establishment of image analysis facilities for the operational utilization of LANDSAT data in Idaho, Oregon, and Washington is discussed. The hardware and software resources are described for each facility along with the range of services

    Utilizing Wellness Champions to Live OhioHealthy

    Get PDF

    Photovoltaics

    Get PDF

    Optical alignment and polarization conversion of neutral exciton spin in individual InAs/GaAs quantum dots

    Full text link
    We investigate exciton spin memory in individual InAs/GaAs self-assembled quantum dots via optical alignment and conversion of exciton polarization in a magnetic field. Quasiresonant phonon-assisted excitation is successfully employed to define the initial spin polarization of neutral excitons. The conservation of the linear polarization generated along the bright exciton eigenaxes of up to 90% and the conversion from circular- to linear polarization of up to 47% both demonstrate a very long spin relaxation time with respect to the radiative lifetime. Results are quantitatively compared with a model of pseudo-spin 1/2 including heavy-to-light hole mixing.Comment: 5 pages, 3 figure

    Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations

    Full text link
    A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q1q\approx 1, thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1^1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m=1,n=1)(m=1,n=1) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β\beta is sufficiently high to provide the necessary drive for the (m=1,n=1)(m=1,n=1) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.Comment: submitted to Physics of Plasmas (23 pages, 15 Figures
    corecore