7 research outputs found

    Fine-scale electric fields and Joule heating from observations of the Aurora

    Get PDF
    Optical measurements from three selected wavelengths have been combined with modelling of emissions from an auroral event to estimate the magnitude and direction of small-scale electric fields on either side of an auroral arc. The temporal resolution of the estimates is 0.1 seconds, which is much higher resolution than measurements from SuperDARN in the same region, with which we compare our estimates. Additionally, we have used the SCANDI instrument to measure the neutral wind during the event in order to calculate the height integrated Joule heating. Joule heating obtained from the small scale electric fields gives larger values (17 ± 11 and 6 ± 9 mWm−2 on average on each side of the arc) than the Joule heating obtained from more conventionally used SuperDARN data (5 mWm−2). This result is significant, because Joule heating will cause changes in the thermosphere from thermal expansion and thermal conductivity, and may also affect the acceleration of the neutral wind. Our result indicates that high spatial and temporal resolution electric fields may play an important role in the dynamics of the magnetosphere-ionosphere-thermosphere system

    Suprathermal Fe in the Earths plasma environment: Cluster RAPID observations

    Get PDF
    Baryonic matter in geospace is almost exclusively in a plasma state, with protons (H+) and to some extent ionized helium (He) and oxygen (O) being the dominant ion species. But also other heavier ion species and even molecular ions are present in geospace. The Research with Adaptive Particle Imaging Detectors (RAPID) on board the Cluster satellites can identify and characterize some of these ions by utilizing their measured time of flight and energy. Usually, the measurements are then assigned into three discrete species channels; protons (H+), helium (He), and a common channel for carbon, nitrogen, and oxygen (CNO), each with flux, energy, and angular information. But RAPID also has a Direct Event (DE) diagnostic mode in which the full time of flight and energy information for a limited number of incident particles are stored. With knowledge about energy losses in the various detector parts, it is then possible to derive the atomic mass of the incident particle. In this paper we report on results from a study of Cluster DE events during the years 2001–2018, with a particular emphasis of iron (Fe) ions. We show that suprathermal Fe ions can be found all over geospace covered by Cluster, and that the time variation is consistent with modulation by geomagnetic disturbances and solar activity. We do not find any clear correlations between detection of suprathermal Fe and meteor showers or sputtering off the moon

    Variability in the electrodynamics of the small scale Auroral arc

    No full text
    A statistical study has been made of dynamic small-scale auroral events in order to understand the drivers of the large variability in the electrodynamics of auroral arcs at fine scales. We used the Auroral Structure and Kinetics (ASK) instrument, located on Svalbard, in order to measure various electrodynamic properties of fine scale auroral arcs. We performed Spearman and Kendall statistical tests and found two significant correlations. The first is between the mean precipitation flux and the variability of flux, which we assume is because of the dynamic and bursty nature of the acceleration mechanism and its dependence on Alfvén waves. The second correlation is between the variability of the precipitating electron flux and the variability of the tangential component of the electric field close to the arc and perpendicular to the magnetic field. We propose that both variabilities occur because of the variability of the upward (field-aligned) current sheet in and around the arc, which is dynamic and non-uniform. The correlation between the two variabilities can therefore be explained by their common source.</p

    Observations of Asymmetric Lobe Convection for Weak and Strong Tail Activity

    Get PDF
    In this study we use high‐quality convection data from the Electron Drift Instrument on board Cluster to investigate how near‐Earth tail activity affects the average convection pattern in the magnetotail lobes when the interplanetary magnetic field has a dominating east‐west (By) component. Two different proxies have been used to represent different levels of reconnection in the near‐Earth tail: The value of the AL index and the substorm phases identified by the Substorm Onsets and Phases from Indices of the Electrojet algorithm. We find that the convection changes from a dominantly YGSM direction, but opposite in the two hemispheres, to a flow oriented more toward the plasma sheet, as the north‐south component of the convection increases when reconnection enhances in the near Earth tail. This result is consistent with recent observations of the convection in the ionosphere, which suggest that the nightside convection pattern becomes more north‐south symmetric when tail reconnection increases. This is also supported by simultaneous auroral observations from the two hemispheres, which shows that conjugate auroral features become more symmetric during substorm expansion phase. The reduced asymmetry implies that the asymmetric pressure balance in the lobes is altered during periods with strong reconnection in the near‐Earth tail

    Observations of Asymmetric Lobe Convection for Weak and Strong Tail Reconnection

    Get PDF
    In this study we use high‐quality convection data from the Electron Drift Instrument on board Cluster to investigate how near‐Earth tail activity affects the average convection pattern in the magnetotail lobes when the interplanetary magnetic field has a dominating east‐west (By) component. Two different proxies have been used to represent different levels of reconnection in the near‐Earth tail: The value of the AL index and the substorm phases identified by the Substorm Onsets and Phases from Indices of the Electrojet algorithm. We find that the convection changes from a dominantly YGSM direction, but opposite in the two hemispheres, to a flow oriented more toward the plasma sheet, as the north‐south component of the convection increases when reconnection enhances in the near Earth tail. This result is consistent with recent observations of the convection in the ionosphere, which suggest that the nightside convection pattern becomes more north‐south symmetric when tail reconnection increases. This is also supported by simultaneous auroral observations from the two hemispheres, which shows that conjugate auroral features become more symmetric during substorm expansion phase. The reduced asymmetry implies that the asymmetric pressure balance in the lobes is altered during periods with strong reconnection in the near‐Earth tail
    corecore