70 research outputs found

    AI-based multi-PRS models outperform classical single-PRS models

    Get PDF
    Polygenic risk scores (PRS) calculate the risk for a specific disease based on the weighted sum of associated alleles from different genetic loci in the germline estimated by regression models. Recent advances in genetics made it possible to create polygenic predictors of complex human traits, including risks for many important complex diseases, such as cancer, diabetes, or cardiovascular diseases, typically influenced by many genetic variants, each of which has a negligible effect on overall risk. In the current study, we analyzed whether adding additional PRS from other diseases to the prediction models and replacing the regressions with machine learning models can improve overall predictive performance. Results showed that multi-PRS models outperform single-PRS models significantly on different diseases. Moreover, replacing regression models with machine learning models, i.e., deep learning, can also improve overall accuracy

    Genome sequencing in families with congenital limb malformations

    Get PDF
    The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00439-021-02295-y

    Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease

    Get PDF
    Pedigree, linkage and association studies are consistent with heritable variation for complex disease due to the segregation of genetic factors in families and in the population. In contrast, de novo mutations make only minor contributions to heritability estimates for complex traits. Nonetheless, some de novo variants are known to be important in disease etiology. The identification of risk-conferring de novo variants will contribute to the discovery of etiologically relevant genes and pathways and may help in genetic counseling. There is considerable interest in the role of such mutations in complex neuropsychiatric disease, largely driven by new genotyping and sequencing technologies. An important role for large de novo copy number variations has been established. Recently, whole-exome sequencing has been used to extend the investigation of de novo variation to point mutations in protein-coding regions. Here, we consider several challenges for the interpretation of such mutations in the context of their role in neuropsychiatric disease

    De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway

    Get PDF
    CSNK2B encodes for casein kinase II subunit beta (CK2b), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and b-catenin with mutated CK2b. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated b-catenin and consequent absence of active b-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear b-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS

    Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa

    Get PDF
    Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system

    PEDIA: prioritization of exome data by image analysis.

    Get PDF
    PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression

    Get PDF
    Importance Diverse models have been developed to predict psychosis in patients with clinical high-risk (CHR) states. Whether prediction can be improved by efficiently combining clinical and biological models and by broadening the risk spectrum to young patients with depressive syndromes remains unclear. Objectives To evaluate whether psychosis transition can be predicted in patients with CHR or recent-onset depression (ROD) using multimodal machine learning that optimally integrates clinical and neurocognitive data, structural magnetic resonance imaging (sMRI), and polygenic risk scores (PRS) for schizophrenia; to assess models' geographic generalizability; to test and integrate clinicians' predictions; and to maximize clinical utility by building a sequential prognostic system. Design, Setting, and Participants This multisite, longitudinal prognostic study performed in 7 academic early recognition services in 5 European countries followed up patients with CHR syndromes or ROD and healthy volunteers. The referred sample of 167 patients with CHR syndromes and 167 with ROD was recruited from February 1, 2014, to May 31, 2017, of whom 26 (23 with CHR syndromes and 3 with ROD) developed psychosis. Patients with 18-month follow-up (n = 246) were used for model training and leave-one-site-out cross-validation. The remaining 88 patients with nontransition served as the validation of model specificity. Three hundred thirty-four healthy volunteers provided a normative sample for prognostic signature evaluation. Three independent Swiss projects contributed a further 45 cases with psychosis transition and 600 with nontransition for the external validation of clinical-neurocognitive, sMRI-based, and combined models. Data were analyzed from January 1, 2019, to March 31, 2020. Main Outcomes and Measures Accuracy and generalizability of prognostic systems. Results A total of 668 individuals (334 patients and 334 controls) were included in the analysis (mean [SD] age, 25.1 [5.8] years; 354 [53.0%] female and 314 [47.0%] male). Clinicians attained a balanced accuracy of 73.2% by effectively ruling out (specificity, 84.9%) but ineffectively ruling in (sensitivity, 61.5%) psychosis transition. In contrast, algorithms showed high sensitivity (76.0%-88.0%) but low specificity (53.5%-66.8%). A cybernetic risk calculator combining all algorithmic and human components predicted psychosis with a balanced accuracy of 85.5% (sensitivity, 84.6%; specificity, 86.4%). In comparison, an optimal prognostic workflow produced a balanced accuracy of 85.9% (sensitivity, 84.6%; specificity, 87.3%) at a much lower diagnostic burden by sequentially integrating clinical-neurocognitive, expert-based, PRS-based, and sMRI-based risk estimates as needed for the given patient. Findings were supported by good external validation results. Conclusions and RelevanceThese findings suggest that psychosis transition can be predicted in a broader risk spectrum by sequentially integrating algorithms' and clinicians' risk estimates. For clinical translation, the proposed workflow should undergo large-scale international validation.Question Can a transition to psychosis be predicted in patients with clinical high-risk states or recent-onset depression by optimally integrating clinical, neurocognitive, neuroimaging, and genetic information with clinicians' prognostic estimates? Findings In this prognostic study of 334 patients and 334 control individuals, machine learning models sequentially combining clinical and biological data with clinicians' estimates correctly predicted disease transitions in 85.9% of cases across geographically distinct patient populations. The clinicians' lack of prognostic sensitivity, as measured by a false-negative rate of 38.5%, was reduced to 15.4% by the sequential prognostic model. Meaning These findings suggest that an individualized prognostic workflow integrating artificial and human intelligence may facilitate the personalized prevention of psychosis in young patients with clinical high-risk syndromes or recent-onset depression.</p
    • 

    corecore