20,496 research outputs found
Theory of a refined earth model
Refined equations are derived relating the variations of the earths gravity and radius as functions of longitude and latitude. They particularly relate the oblateness coefficients of the old harmonics and the difference of the polar radii /respectively, ellipticities and polar gravity accelerations/ in the Northern and Southern Hemispheres
Central bank structure, policy efficiency, and macroeconomic performance: exploring empirical relationships
Monetary policy ; Banks and banking, Central
Large scale simulations of the jet-IGM interaction
In a parameter study extending to jet densities of times the
ambient one, I have recently shown that light large scale jets start their
lives in a spherical bow shock phase. This allows an easy description of the
sideways bow shock propagation in that phase. Here, I present new, bipolar,
simulations of very light jets in 2.5D and 3D, reaching the observationally
relevant scale of jet radii. Deviations from the early bow shock
propagation law are expected because of various effects. The net effect is,
however, shown to remain small. I calculate the X-ray appearance of the shocked
cluster gas and compare it to Cygnus A and 3C 317. Rings, bright spots and
enhancements inside the radio cocoon may be explained.Comment: 8 pages, 5 figures, ApSS accepted, proceedings of the virtual jets
2003 conference in Dogliani/Italy, v3: funny and unimportant bug corrected,
one reference adde
On the chiral effective meson-baryon Lagrangian at third order
We show that the recently constructed complete and ``minimal'' third order
meson-baryon effective chiral Lagrangian can be further reduced from 84 to 78
independent operators.Comment: 6 pp, accepted for publication in Eur. Phys. J.
Miniature probes for use in gas turbine testing
Several examples of miniature probes (null type as well as fixed position) are presented which have proved useful in aircraft and space power systems component testing and are applicable to automotive gas turbine testing. These probes are used to determine component or system performance from the measurement of gas temperature as well as total and static pressure, and flow direction. Detailed drawings of the sensors are presented along with experimental data covering the flow characteristics over the range of intended use
Acceleration of cosmic rays and gamma-ray emission from supernova remnant/molecular cloud associations
The gamma-ray observations of molecular clouds associated with supernova
remnants are considered one of the most promising ways to search for a solution
of the problem of cosmic ray origin. Here we briefly review the status of the
field, with particular emphasis on the theoretical and phenomenological aspects
of the problem.Comment: Invited talk at SUGAR201
Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars
Context. The self-enrichment scenario for globular clusters (GC) requires large amounts of residual gas after the initial formation of the first stellar generation. Recently, we found that supernovae may not be able to expel that gas, as required to explain their present-day gas-free state, and suggested that a sudden accretion onto the dark remnants at a stage when type II supernovae have ceased may plausibly lead to fast gas expulsion. Aims. Here, we explore the consequences of these results for the self-enrichment scenario via fast-rotating massive stars (FRMS). Methods. We analysed the interaction of FRMS with the intra-cluster medium (ICM), in particular where, when, and how the second generation of stars may form. From the results, we developed a timeline of the first ≈ 40 Myr of GC evolution. Results. Our previous results imply three phases during which the ICM is in a fundamentally different state, namely the wind bubble phase (lasting 3.5 to 8.8 Myr), the supernova phase (lasting 26.2 to 31.5 Myr), and the dark remnant accretion phase (lasting 0.1 to 4 Myr): (i) Quickly after the first-generation massive stars have formed, stellar wind bubbles compress the ICM into thin filaments. No stars may form in the normal way during this phase because of the high Lyman-Werner flux density. If the first-generation massive stars have equatorial ejections however, as we proposed in the FRMS scenario, accretion may resume in the shadow of the equatorial ejecta. The second-generation stars may then form due to gravitational instability in these disc, which are fed by both the FRMS ejecta and pristine gas. (ii) In the supernova phase the ICM develops strong turbulence, with characteristic velocities below the escape velocity. The gas does not accrete either onto the stars or onto the dark remnants in this phase because of the high gas velocities. The strong mass loss associated with the transformation of the FRMS into dark remnants then leads to the removal of the second-generation stars from the immediate vicinity of the dark remnants. (iii) When the supernovae have ceased, turbulence quickly decays, and the gas can once more accrete, now onto the dark remnants. As discussed previously, this may release sufficient energy to unbind the gas, and may happen fast enough so that a large fraction of less tightly bound first-generation stars are lost. Conclusions. Studying the FRMS scenario for the self-enrichment of GCs in detail reveals the important role of the physics of the ICM for our understanding of the formation and early evolution of GCs. Depending on the level of mass segregation, this sets constraints on the orbital properties of the stars, in particular high orbital eccentricities, which likely has implications on the GC formation scenario.Peer reviewe
Risk of transmitting meningococcal infection by transient contact on aircraft and other transport.
Contact tracing of persons with meningococcal disease who have travelled on aeroplane or other multi-passenger transport is not consistent between countries. We searched the literature for clusters of meningococcal disease linked by transient contact on the same plane, train, bus or boat. We found reports of two clusters in children on the same school bus and one in passengers on the same plane. Cases within each of these three clusters were due to strains that were genetically indistinguishable. In the aeroplane cluster the only link between the two cases was through a single travel episode. The onset of illness (2 and 5 days after the flight) is consistent with infection from an unidentified carrier around the time of air travel. In contrast to the established risk of transmission from a case of tuberculosis, it is likely that the risk from a case of meningococcal disease to someone who is not identified as a close contact is exceedingly low. This should be considered in making international recommendations for passenger contact tracing after a case of meningococcal disease on a plane or other multi-passenger transport
- …
