187 research outputs found

    Delay or procrastination: A comparison of self-report and behavioral measures of procrastination and their impact on affective well-being

    Full text link
    A short-term longitudinal study (N = 162 undergraduate students) replicates and extends previous findings on the relationship between self-reported procrastination and behavioral measures of procrastination (i.e., a comparison between actual and planned study time), and assesses their relation with affective well-being. All variables were measured 16 times over the course of 8 weeks. State measured self-reported and behavioral procrastination correlated only moderately. In line with the definition of procrastination as a combination of delaying to work on a task and discomfort with the delay, affective well-being was better predicted by self-reported than by behavioral procrastination. This suggests that self-reported procrastination better reflects the construct than a purely behavioral measure of procrastination. Consequences and implications for further assessment of procrastination are discussed

    The pandemic coping scale – validity and reliability of a brief measure of coping during a pandemic

    Get PDF
    This study assessed the validity and reliability of the Pandemic Coping Scale (PCS), a new brief measure of coping with pandemic-related stressors. Methods The PCS was administered to N = 2316 German participants during the COVID-19 pandemic. Exploratory and confirmatory factor analysis was applied among random splits of the sample. Global goodness of fit (χ2, RMSEA, SRMR, CFI, TLI), local goodness of fit (factor loadings, communalities, factor reliability, discriminant validity) and additional test quality criteria (internal consistency, item discrimination and difficulty) were evaluated for a four-factor model vs. a four-factor model combined with a second-order general factor. Convergent and divergent validity were examined by Pearson correlations of the PCS subscales with the Brief-COPE subscales; criterion validity was evaluated by correlations with wellbeing (WHO-5), depressive (PHQ-9) and anxiety symptoms (GAD-2). Results Exploratory factor analysis suggested a four-factor solution (‘Healthy Lifestyle’, ‘Joyful Activities’, ‘Daily Structure’, ‘Prevention Adherence’). Confirmatory factor analysis showed a sufficient global fit for both specified models which did not differ in their fit to the data. Local goodness of fit indices showed moderate to large factor loadings and good factor reliabilities except for the subscale ‘Prevention Adherence’. Internal consistencies were good for the PCS total scale (α = .83), the ‘Healthy Lifestyle’ (α = .79) and the ‘Daily Structure’ (α = .86) subscales, acceptable for ‘Joyful Activities’ (α = .60), and low for ‘Prevention Adherence’ (α = .52). The four subscales evidenced convergent and divergent validity with the Brief-COPE subscales. The subscales ‘Healthy lifestyle’, ‘Joyful activities’ and ‘Daily structure’ showed criterion validity with wellbeing, depressive and anxiety symptoms. Conclusions The PCS is a reliable and valid measure to assess pandemic-specific coping behavior in the domains of ‘Healthy Lifestyle’, ‘Joyful Activities’, and ‘Daily Structure’. The PCS subscale ‘Prevention Adherence’ might be improved by adding items with varying item difficulties

    Low-frequency sound affects active micromechanics in the human inner ear

    Get PDF
    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing

    Stimulus Prediction and Postural Reaction: Phase-Specific Modulation of Soleus H-Reflexes Is Related to Changes in Joint Kinematics and Segmental Strategy in Perturbed Upright Stance

    Get PDF
    Anticipation determines the timing and efficiency of human motor performance. This study aimed to evaluate the effect of stimulus anticipation on proactive (prior to the event) and reactive (after the event) postural adjustments in response to perturbations. Postural set was manipulated by providing either (i) predictable, (ii) unpredictable, or (iii) cheated perturbations which require balance corrections to maintain postural stability. In 29 subjects, a protocol of anterior and posterior perturbations was applied for the conditions (i–iii). Center of pressure (COP) displacement, ankle, knee, and hip joint kinematics and electromyographic activity (EMG) of the soleus (SOL) and tibialis anterior (TA) muscles were recorded prior (PRE) and after posterior perturbations. SOL H-reflexes at the peak of the short-, medium- ,and long-latency responses (SLR, MLR, LLR) were assessed. For conditions (i to iii) EMG activity and COP differed prior to perturbation onset (p < 0.05). After perturbation, results demonstrated a progressively increased H-reflex amplitude in the MLR and LLR (p < 0.05), delayed muscle activities (p < 0.05), and shifted activation patterns, with muscles of the proximal segment being more involved in the compensatory postural response (p < 0.05). COP displacements and ankle, knee, and hip joint deflections progressively increased (p < 0.05). Neuromechanical coupling showed positive correlations for the anticipation-induced changes in EMG activity and H-reflex amplitude with that of COP displacement (p < 0.05). In conclusion, proactive and reactive postural responses indicated setting dependent modulations of segmental and phasic muscle activation. A shift to proximal muscle groups and facilitated late reflex responses compensating for cheated or unpredicted perturbations was found to recover a safe body equilibrium. In consideration of the phase-specific adaptation and its interrelationship to the kinematics, it suggested that changes in stimulus prediction challenged the central nervous system to appropriately counteract the higher postural challenges. The outcomes of this experiment are of functional relevance for experimental and training settings involving perturbation stimuli. These findings provide fundamental information of the mechanisms underlying postural adjustments in response to external perturbations

    Neuromuscular and Kinematic Adaptation in Response to Reactive Balance Training – a Randomized Controlled Study Regarding Fall Prevention

    Get PDF
    Slips and stumbles are main causes of falls and result in serious injuries. Balance training is widely applied for preventing falls across the lifespan. Subdivided into two main intervention types, biomechanical characteristics differ amongst balance interventions tailored to counteract falls: conventional balance training (CBT) referring to a balance task with a static ledger pivoting around the ankle joint versus reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. This study aimed to evaluate the efficacy of reactive, slip-simulating RBT compared to CBT in regard to fall prevention and to detect neuromuscular and kinematic dependencies. In a randomized controlled trial, 38 participants were randomly allocated either to CBT or RBT. To simulate stumbling scenarios, postural responses were assessed to posterior translations in gait and stance perturbation before and after 4 weeks of training. Surface electromyography during short- (SLR), medium- (MLR), and long-latency response of shank and thigh muscles as well as ankle, knee, and hip joint kinematics (amplitudes and velocities) were recorded. Both training modalities revealed reduced angular velocity in the ankle joint (P < 0.05) accompanied by increased shank muscle activity in SLR (P < 0.05) during marching in place perturbation. During stance perturbation and marching in place perturbation, hip angular velocity was decreased after RBT (P from TTEST, Pt < 0.05) accompanied by enhanced thigh muscle activity (SLR, MLR) after both trainings (P < 0.05). Effect sizes were larger for the RBT-group during stance perturbation. Thus, both interventions revealed modified stabilization strategies for reactive balance recovery after surface translations. Characterized by enhanced reflex activity in the leg muscles antagonizing the surface translations, balance training is associated with improved neuromuscular timing and accuracy being relevant for postural control. This may result in more efficient segmental stabilization during fall risk situations, independent of the intervention modality. More pronounced modulations and higher effect sizes after RBT in stance perturbation point toward specificity of training adaptations, with an emphasis on the proximal body segment for RBT. Outcomes underline the benefits of balance training with a clear distinction between RBT and CBT being relevant for training application over the lifespan

    Effects of cold winters and roost site stability on population development of non-native Asian ring-necked parakeets (Alexandrinus manillensis) in temperate Central Europe – Results of a 16-year census

    Get PDF
    Asian ring-necked parakeets (Alexandrinus manillensis, formerly Psittacula krameri, hereafter RNP) first bred in Germany in 1969. Since then, RNP numbers increased in all three major German subpopulations (Rhineland, Rhine-Main, Rhine-Neckar) over the period 2003–2018. In the Rhine-Neckar region, the population increased to more than fivefold within only 15 years. Interestingly, there was no significant breeding range expansion of  RNP in the period 2010–2018. In 2018, the total number of RNP in Germany amounted to >16,200 birds. Differences in RNP censuses between years were evident. Surprisingly, cold winters (extreme value, −13.7 °C) and cold weather conditions in the breeding season (coldest month average, −1.36 °C) were not able to explain between-year variation. This finding suggests that in general winter mortality is low – with exceptions for winters 2008/2009 and 2009/2010, and a population-relevant loss of broods is low in our study population. Surprisingly, the social behaviour in terms of spatio-temporal stability of roost sites could well explain positive and negative population trends. Years of spatially stable and regularly used roost sites seem to correlate with increasing population sizes. In contrast, known shifts of RNP among different roost sites or the formations of new roost sites by split are related to population stagnation or a decrease in numbers. Climate change may lead to further range expansion as cities not suitable yet for RNP may become so in the near future.

    Effect of various weight loss interventions on serum NT-proBNP concentration in severe obese subjects without clinical manifest heart failure

    Get PDF
    Obesity is associated with a "natriuretic handicap" indicated by reduced N-terminal fragment of proBNP (NT-proBNP) concentration. While gastric bypass surgery improves the natriuretic handicap, it is presently unclear if sleeve gastrectomy exhibits similar effects. We examined NT-proBNP serum concentration in n = 72 obese participants without heart failure before and 6 months after sleeve gastrectomy (n = 28), gastric bypass surgery (n = 19), and 3-month 800 kcal/day very-low calorie diet (n = 25). A significant weight loss was observed in all intervention groups. Within 6 months, NT-proBNP concentration tended to increase by a median of 44.3 pg/mL in the sleeve gastrectomy group (p = 0.07), while it remained unchanged in the other groups (all p ≥ 0.50). To gain insights into potential effectors, we additionally analyzed NT-proBNP serum concentration in n = 387 individuals with different metabolic phenotypes. Here, higher NT-proBNP levels were associated with lower nutritional fat and protein but not with carbohydrate intake. Of interest, NT-proBNP serum concentrations were inversely correlated with fasting glucose concentration in euglycemic individuals but not in individuals with prediabetes or type 2 diabetes. In conclusion, sleeve gastrectomy tended to increase NT-proBNP levels in obese individuals and might improve the obesity-associated "natriuretic handicap". Thereby, nutritional fat and protein intake and the individual glucose homeostasis might be metabolic determinants of NT-proBNP serum concentration
    corecore