313 research outputs found

    The Grace of God in the Law of Moses: A Second Look at Israel’s Written Code

    Get PDF
    For centuries, the Mosaic Code (“MC”) has been viewed as Israel’s prescriptive legislation, whereby Jewish leaders were to judge infractions by the “letter of the law.” This view is one which permeates both pulpit and pew alike, even in this modern era. However, recent developments in scholarship are challenging this understanding of MC, concluding instead that this “law code” was not utilized in Israelite jurisprudence, but rather as a covenant contract that worked not prescriptively in the lives of the Jews, but rather descriptively, in that it relayed the heart of YHWH to its reader. Accordingly, MC was to be utilized in the civil sphere as idyllic law to help the civil magistrate to formulate just rulings. In the personal and interpersonal realm, this descriptive view of the law was to be utilized to change the individual from the inside out, thereby conforming the heart of the individual to the character and likeness of YHWH. Internal biblical data does show evidence of MC use as a prescriptive legislative tool, but the question must be asked, when did this shift from descriptive to prescriptive take place? This study argues that the conceptual shift of MC to a prescriptive law code took place during the Intertestamental Period, or, during the period of Greek Hellenization. This study likewise argues that during the ministry of Christ, the Lord came to challenge the prescriptive presuppositions of His Jewish counterparts, thus reforming their narrow understanding of MC to one which focuses primarily on the heart

    The Influence of Juncus-rhizosphere Dissolved Organic Matter on Coastal Plankton Communities

    Get PDF
    Many aquatic plants produce copious amounts of dissolved organic matter (DOM) which enters surrounding waters and potentially stimulates planktonic activity. In the northern Gulf of Mexico, Juncus roemarianus (i.e. black needlerush) is a dominant marsh grass species residing in coastal zones and barrier islands. The below-ground biomass i.e. rhizosphere, can be consistently submerged, serving as a potential source of DOM to the surrounding waters. The lability and possible stimulatory effect of J. roemarianus DOM was examined for three plankton communities collected within the discharge region of Mobile Bay and adjacent waters of Gulf Shores, Alabama (less affected by Mobile Bay). DOM within the pore water surrounding the J. roemarianus was extracted, concentrated, and added to the field communities along with positive (i.e. addition of labile organic matter) and negative (i.e. no additions) controls. In the Mobile Bay experiment, the DOM addition stimulated increased autotrophic biomass and heterotrophic activity well above that observed in the negative controls. However, experiments utilizing Gulf Shores water showed little to no stimulation. Our results suggest that J. roemarianus DOM addition may stimulate planktonic activity; however, the degree of enhancement is likely controlled by the community composition and water properties (e.g. nutrient availability)

    Diatom control of the autotrophic community and particle export in the eastern Bering Sea during the recent cold years (2008–2010)

    Get PDF
    The southeastern Bering Sea has exhibited shifts in climate since the start of the 21st century. The regional climate shifts are manifested in the duration and areal extent of seasonal sea-ice coverage. During a recent cold period (2008–2010) with extensive spring sea-ice cover over the southeastern shelf of the Bering Sea, a total of 77 water column and 24 sediment trap profiles were collected over the shelf and shelf break and analyzed for autotrophic pigment concentrations and elemental (carbon, nitrogen, phosphorus, and silicon) concentrations in suspended and exported particulate material. These results are used to establish the seasonal succession of the autotrophic community and the control that both phytoplankton and zooplankton exert on export production. In spring (April to mid-June), total chlorophyll a (TChl a) concentrations were generally low (i.e., \u3c 1 ÎŒg L–1); however, localized phytoplankton blooms near the marginal ice zone (MIZ) lead to elevated spring average TChl a concentrations (i.e., \u3e5 ÎŒg L–1). In summer (mid-June to late July), photic zone chlorophyll a concentrations were typically \u3c1 ÎŒg L–1 over the shelf and at the shelf break. Diatoms represented the greatest contribution to TChl a (regional averages of 71%–96% in spring and 25%–75% in summer) and autotrophic biomass in spring and summer. This algal class also represented 50%–99% of TChl a associated with particles sinking from the photic zone. The relatively high proportion of phaeophorbide a in sediment trap material indicates that sinking of zooplankton fecal pellets facilitate the export of particles through the water column. Further, zooplankton grazing may be an important process that returns regenerated nutrients to the water column based on the elemental composition of suspended and sinking particles. In colder than average years, the emergence of diatom blooms in the spring MIZ supports the production of abundant large zooplankton, which are a primary food source for juvenile pelagic fishes of economically important species. Therefore, processes in colder than average years may be essential for the transfer of particulate organic carbon from the surface waters and the success of the economically important pelagic fisheries

    Selective Excitation of Vibrational States by Shaping of Light-Induced Potentials

    Get PDF
    In this Letter we describe a method for population transfer using intense, ultrafast laser pulses. The selectivity is accomplished by careful shaping of light-induced potentials (LIPs). Creation and control of the LIPs is accomplished by choosing pairs of pulses with proper frequency detunings and time delays. As an example, selective population transfer is demonstrated for a three-state model of the sodium dimer

    COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From immunology to treatment

    Get PDF
    Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug–drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.AC was supported by the Fundação para a CiĂȘncia e a Tecnologia (FCT) (CEECIND/03628/2017, UIDB/50026/2020 and UIDP/50026/2020), and the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023). This research received no other external funding

    Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study

    Get PDF
    Over recent decades the highest rates of water column warming and sea ice loss across the Arctic Ocean have been observed in the Barents Sea. These physical changes have resulted in rapid ecosystem adjustments, manifesting as a northward migration of temperate phytoplankton species at the expense of silica-based diatoms. These changes will potentially alter the composition of phytodetritus deposited at the seafloor, which acts as a biogeochemical reactor and is pivotal in the recycling of key nutrients, such as silicon (Si). To appreciate the sensitivity of the Barents Sea benthic system to the observed changes in surface primary production, there is a need to better understand this benthic–pelagic coupling. Stable Si isotopic compositions of sediment pore waters and the solid phase from three stations in the Barents Sea reveal a coupling of the iron (Fe) and Si cycles, the contemporaneous dissolution of lithogenic silicate minerals (LSi) alongside biogenic silica (BSi), and the potential for the reprecipitation of dissolved silicic acid (DSi) as authigenic clay minerals (AuSi). However, as reaction rates cannot be quantified from observational data alone, a mechanistic understanding of which factors control these processes is missing. Here, we employ reaction–transport modelling together with observational data to disentangle the reaction pathways controlling the cycling of Si within the seafloor. Processes such as the dissolution of BSi are active on multiple timescales, ranging from weeks to hundreds of years, which we are able to examine through steady state and transient model runs. Steady state simulations show that 60 % to 98 % of the sediment pore water DSi pool may be sourced from the dissolution of LSi, while the isotopic composition is also strongly influenced by the desorption of Si from metal oxides, most likely Fe (oxyhydr)oxides (FeSi), as they reductively dissolve. Further, our model simulations indicate that between 2.9 % and 37 % of the DSi released into sediment pore waters is subsequently removed by a process that has a fractionation factor of approximately −2 ‰, most likely representing reprecipitation as AuSi. These observations are significant as the dissolution of LSi represents a source of new Si to the ocean DSi pool and precipitation of AuSi an additional sink, which could address imbalances in the current regional ocean Si budget. Lastly, transient modelling suggests that at least one-third of the total annual benthic DSi flux could be sourced from the dissolution of more reactive, diatom-derived BSi deposited after the surface water bloom at the marginal ice zone. This benthic–pelagic coupling will be subject to change with the continued northward migration of Atlantic phytoplankton species, the northward retreat of the marginal ice zone and the observed decline in the DSi inventory of the subpolar North Atlantic Ocean over the last 3 decades

    Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status

    Full text link
    Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157–173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure
    • 

    corecore