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Abstract: Like severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory
distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary
pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA)
published until June 2020. The release of danger-associated molecular patterns during severe
COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are
predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition
pathways required for the activation of antiviral immunity may, paradoxically, contribute to a
highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA
remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture,
which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact
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that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission.
Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence
of CAPA. Finally, the treatment of CAPA is complicated by drug–drug interactions associated with
broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the
use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality
creates an urgency for new antifungal drugs currently in advanced clinical development with more
promising pharmacokinetic and pharmacodynamic profiles.

Keywords: SARS COV-2; Aspergillus; novel coronavirus; superinfection; co-infection; risk factors;
prevalence; challenges; immune response; expert statement; European Confederation of Medical Mycology

1. Introduction

Invasive fungal infections caused by various fungal genera, including Aspergillus, complicate and
endanger lives of millions of individuals annually [1]. Aspergillus genera, most frequently Aspergillus fumigatus,
are ubiquitous in the environment and cause a wide range of infections in humans, including invasive
pulmonary aspergillosis (IPA), chronic pulmonary aspergillosis (CPA), allergic bronchopulmonary
aspergillosis (ABPA), chronic rhinosinusitis, fungal asthma, and Aspergillus bronchitis [2,3]. IPA,
the most severe manifestation of disease from Aspergillus, is associated with high mortality rates and is
a prominent complication among those with profound immunosuppression, such as those undergoing
hematopoietic transplantation, as well as those with structural lung damage who receive systemic
corticosteroids for their underlying condition, such as patients with chronic obstructive pulmonary
diseases (COPD) [2].

Recently, it has been reported that a relatively high number of influenza patients presenting with
severe acute respiratory distress syndrome (ARDS) also rapidly develop IPA, which is associated
with increased duration of hospitalization and mortality [4,5]. Corticosteroid use and pulmonary
epithelial damages caused by severe influenza are the main risk factors for developing IPA [4,5].
The recent global pandemic of coronavirus disease-19, also known as COVID-19, has infected over
6 million patients worldwide, with more than 360,000 deaths. It has been shown that up to 40% of
COVID-19 hospitalized patients can develop ARDS [6], and thereby become susceptible to acquire
co-infections caused by bacteria and also Aspergillus spp. [7,8], although frequency of co-infections
seems to vary between centers and overall co-infections may occur less frequently than with severe
influenza [9]. Once they occur, these superinfections are associated with high mortality rates and
may prolong the acute phase of COVID-19 [10]. In this comprehensive review, we discuss various
aspects of COVID-19 associated pulmonary aspergillosis (CAPA), focusing specifically on immunology,
risk factors, prevalence, diagnosis, treatment, and current challenges.

2. Immunology

Dissecting the complex pathogenesis of CAPA requires a molecular understanding of the
physiological processes whereby infection with SARS-CoV-2 facilitates fungal pathogenesis. Similar to
other SARS coronaviruses, SARS-CoV-2 targets and invades epithelial cells and type II pneumocytes
through binding of the SARS spike protein to the angiotensin-converting enzyme 2 (ACE2) receptors [11].
Cleavage of the S1/S2 domain by the type 2 transmembrane protease TMPRSS2 leads to the activation
of the spike protein [12], thereby facilitating viral entry into the target cell via ACE2. Besides its role as
a SARS virus receptor, ACE2 was also demonstrated to be required for protection from severe acute
lung injury in ARDS [13]. In support of this, an insertion/deletion polymorphism that affects ACE
activity was associated with ARDS susceptibility and outcome [14]. Whether the preceding interaction
of SARS-CoV-2 with host cells, by disrupting the regulation of the renin-angiotensin system and or the
kallikrein-kinin system, contributes to the development of CAPA, is not known.
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Viral entry and infection elicit an immune response, which is initiated by the establishment of
an inflammatory cascade by innate immune cells. Although the receptor(s) and signaling pathways
involved in the immune recognition of Aspergillus and the downstream production of inflammatory
mediators are relatively well characterized [15], not much is known regarding how the immune system
senses and responds to SARS-CoV-2. Based on the available knowledge for infections with other
coronaviruses, two possible mechanisms can be anticipated and are likely to explain the development of
ARDS and consequently CAPA. The first involves the release of danger-associated molecular patterns
(DAMPs), signal molecules released by dying or damaged cells that act as endogenous danger signals
to promote and exacerbate the immune and inflammatory response leading to lung injury [16]. It is
noteworthy that DAMPs have also been shown to regulate inflammation in fungal diseases [17].
The DAMP/receptor for advanced glycation end-products axis was found to integrate with Toll-like
receptors (TLRs) to generate and amplify the inflammatory response in experimental aspergillosis [18].
Moreover, recipients of allogeneic stem-cell transplantation harboring genetic variants underlying a
hyperactivation of danger signaling in response to infection displayed an increased risk of developing
IPA [19]. This emerging concept could help explain fungal pathogenesis in conditions of exuberant
inflammation such as that observed in COVID-19 patients and highlights DAMP targeting as potential
immunomodulatory strategy in CAPA.

A second possibility involves the collateral effects of recognition pathways required for the
activation of antiviral immunity that may, paradoxically, contribute to an inflammatory environment
that favors secondary infections. ACE2 is not well expressed on immune cells and SARS-CoV are
recognized by TLR4 and TLR3, leading to the activation of MyD88- or TRIF-mediated signaling,
respectively [20,21]. Of note, this may be potentiated in the presence of Aspergillus spp. which activate
TLR4/MyD88/TRIF through the cleavage of fibrinogen [22]. It is likely that SARS-CoV-2 may elicit,
to a large extent, overlapping signaling pathways towards the production of inflammatory cytokines.
In addition, the activation of the inflammasome by SARS-CoV and the consequent production of IL-1β
is an event that contributes further to the hyperinflammatory response [23]. A transcriptome analysis
of COVID-19 patients revealed an early immune response characterized by a marked upregulation
of the IL-1 pathway, even after respiratory function nadir [24]. The possibility that IL-1 and related
pro-inflammatory pathways could serve as therapeutic targets was demonstrated by the favorable
responses in severe COVID-19 patients with secondary hemophagocytic lymphohistiocytosis treated
with the interleukin-1 receptor antagonist anakinra [25]. Similar findings were also disclosed in acute
leukemia patients with COVID-19 [26]. Likewise, IL-1 blockade with anakinra has also been found to
ameliorate inflammation in both chronic granulomatous disease [27] and cystic fibrosis [28], and in
either case, to restrain susceptibility to infection or colonization by Aspergillus. Therefore, the early
hyperactivation of the IL-1 pathway induced by the SARS-CoV-2 infection may be a major factor
establishing a highly permissive inflammatory environment that favors fungal pathogenesis.

Besides IL-1, increased levels of IL-6 have also been consistently reported in severe cases of
COVID-19 [29,30], with an impact on immune cell function and the anti-viral mechanisms of immune
cells [31]. An enhanced production of IL-6 is also observed in epithelial cells following infection with
A. fumigatus, suggesting that, at least in some patients, the co-infection may contribute to the increased
levels of this cytokine in severe COVID-19 patients [32]. In a large patient series of COVID-19 patients
with ARDS, the use of the IL-6 receptor antagonist tocilizumab was recently reported to promote rapid
and sustained responses associated with significant clinical improvement [33]. However, such clinical
approach could paradoxically enhance the predisposition to CAPA, similar to animal models of IL-6
deficiency subjected to experimental aspergillosis [34]. For this reason, ongoing trials are addressing
the combined use of IL-6 antagonists and antifungal prophylaxis in severe COVID-19 patients.

An emerging body of evidence supports therefore an increased systemic inflammatory reaction
in patients with severe SARS-CoV-2 infection who are more likely to develop CAPA. In this regard,
increased levels of circulating proinflammatory cytokines, such as TNF, were observed in patients
requiring intensive care, compared to those with milder infections [35]. Other studies, however,
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have also unveiled marked defects in immune cell populations, namely T-lymphocytes, as another
factor explaining the immune dysfunction in patients with COVID-19 [36]. This suggests that while
sustained innate immune function leads to hyperinflammation [37], lymphocyte numbers decline,
and their function may be defective. In this regard, severe lymphocytopenia was among the factors in a
risk score model that predicted the development of invasive mold disease in patients with hematological
malignances [38]. It is thus reasonable to speculate that in elderly individuals or with co-morbidities,
defective immune responses to SARS-CoV-2 may allow unrestricted viral replication which, in turn,
elicits hyperinflammation and severe complications such as ARDS [39], besides establishing favorable
conditions for the acquisition of secondary infections, such as CAPA.

While there is much to be learned about CAPA, our current understanding of the pathophysiology
of other coinfections with respiratory viruses such as influenza [40] provides an important framework
towards the effective design of immunotherapeutic approaches and the identification of the patients
that could benefit the most from them.

3. Risk Factors Implicated in CAPA Development

Importantly, the pathogenesis of IPA differs between neutropenic and non-neutropenic patients,
including those with COVID-19, impacting clinical presentation, radiological findings and diagnostic
test results in the mycology laboratory [41,42]. Despite these important differences, revised European
Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group
and National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG)
definitions [43] focus primarily on neutropenic patients with underlying hematological malignancies
and “typical” presentation of IPA and have been shown to have limited applicability and inferior
performance in non-neutropenic patients who frequently do not fulfil radiological and host criteria,
including patients with COVID-19 [41,44]. This has resulted in the creation of an alternative clinical
algorithm for diagnosing IPA in the ICU setting in 2012 [41], which defines putative IPA and is now
the standard of care for defining IPA in the ICU [4,45], where highly reliable definitions of IA are still
missing (work on improved definitions is currently in progress [45,46]).

Rapid development of CAPA few days following ICU admission [47] resembles the observation
made for influenza-associated pulmonary aspergillosis [4,5]. Risk factors predisposing COVID-19
patients to develop secondary pulmonary aspergillosis are similar to those identified for influenza-IPA
superinfections [4,5]. The most important risk factors include severe lung damage during the course of
COVID-19 [48], the use of corticosteroids in those with ARDS, the widespread use of broad-spectrum
antibiotics in intensive care units [49], and the presence of comorbidities such as structural lung
defects [47,50–52].

There are some reports revealing that pulmonary fibrosis can be triggered by the cytokine storm
activated by the viral antigens, toxicity posed by drugs, high airway pressure and hypoxia-induced
acute lung injury secondary to mechanical ventilation [53]. While interstitial pulmonary fibrosis per se
does not predispose to development of IPA, a small subset of these COVID-19 survivors may require
long term corticosteroid treatment, which may predispose them to CAPA years after the acute phase of
the viral infection. Overall, 29% of the CAPA cases published to date (10/35) had received systemic
corticosteroids (Table 1). In those with ARDS, systemic corticosteroids are used to alleviate the immune
responses and prevent cytokine storm [6,54–56], but may at the same time increase vulnerability for
developing secondary infections [4,5].
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Table 1. Clinical characteristics of COVID-19 patients with pulmonary aspergillosis published before 10 June 2020.

Country (Prevalence) COHORT [Ref] Age/Sex Underlying Conditions CAPA Classification Local/Systemic
Corticosteroid Use

GM (ODI)/Serum BDG
(pg/mL)/qPCR

Species (Voriconazole
Susceptibility Pattern) Treatment # Outcome

Germany (5/19; 26.3%)ARDS [50]

62/F

Cholecystectomy for cholecystitis,
arterial hypertension, obesity with
sleep apnea, hypercholesterolemia,

ex-smoker, COPD (GOLD 2)

Putative Inhaled steroids
for COPD

GM Serum negative GM
BALF> 2.5

qPCR BALF = Positive

Aspergillus fumigatus (S) culture
from BALF VCZ Died

70/M
Vertebral disc prolapse left L4/5,

flavectomy and nucleotomy,
Ex-smoker

Putative No
GM Serum = 0.7 GM BALF>

2.5
qPCR BALF = Positive

A. fumigatus by PCR; negative
culture ISA Died

54/M
Arterial hypertension, diabetes
mellitus, aneurysm coiling right

A. vertebralis
Putative

Intravenous
corticosteroid therapy 0.4
mg/kg/d, total of 13 days)

GM Serum negative GM
BALF> 2.5

qPCR BALF = Positive

A. fumigatus (S) culture from
tracheal aspirate CASPO→ VCZ Alive

73/M
Arterial hypertension, bullous
emphysema, smoker, COPD

(GOLD 3), Previous Hepatitis B
Putative Inhaled steroids

for COPD

GM Serum negative
qPCR tracheal secretion =

Positive

A. fumigatus (S) culture from
tracheal aspirate VCZ Died

54/F None Putative No
GM Serum = 1.3 and 2.7

qPCR tracheal secretion =
Negative

Negative culture CASPO→ VCZ Alive

France (9/27; 33.3%)ARDS * [51]

53/M Hypertension, obesity, ischemic
heart disease Putative

Dexamethasone iv
20 mg once daily from

day 1 to day 5, followed
by 10 mg once daily
from day 6 to day 10

GM Serum = 0.13
GM BALF = 0.89

BDG = 523
qPCR = Negative

Negative culture None Alive

59/F Hypertension, obesity, diabetes Putative No GM Serum = 0.04 GM BALF =
0.03 qPCR = Negative

A. fumigatus, culture
from BALF None Alive

69/F Hypertension, obesity Putative

Dexamethasone iv
20 mg once daily from

day 1 to day 5, followed
by 10 mg once daily
from day 6 to day 10

GM Serum = 0.04
BDG = 7.8

qPCR BALF = 23.9

A. fumigatus, culture from
tracheal secretion None Alive

63/F Hypertension, diabetes, ischemic
heart disease Putative

Dexamethasone iv
20 mg once daily from

day 1 to day 5, followed
by 10 mg once daily
from day 6 to day 10

GM Serum = 0.51
GM BALF = 0.15

BDG = 63
Negative culture None Died

43/M Asthma with steroid use history Putative No

GM Serum = 0.04
GM BALF = 0.12

BDG = 7
qPCR = Negative

A. fumigatus, culture
from BALF None Alive

79/M Hypertension Putative

Dexamethasone iv
20 mg once daily from

day 1 to day 5, followed
by 10 mg once daily
from day 6 to day 10

GM Serum = 0.02
GM BALF = 0.05

BDG = 23
qPCR BALF = 34.5

A. fumigatus, culture
from BALF None Alive
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Table 1. Cont.

Country (Prevalence) COHORT [Ref] Age/Sex Underlying Conditions CAPA Classification Local/Systemic
Corticosteroid Use

GM (ODI)/Serum BDG
(pg/mL)/qPCR

Species (Voriconazole
Susceptibility Pattern) Treatment # Outcome

77/M Hypertension, asthma Putative

Dexamethasone iv 20
mg once daily from day
1 to day 5, followed by
10 mg once daily from

day 6 to day 10

GM Serum = 0.37
GM BALF = 3.91

BDG = 135
qPCR BALF = 29

A. fumigatus, culture
from BALF VCZ Died

75/F Hypertension, diabetes Putative

Dexamethasone iv 20
mg once daily from day
1 to day 5, followed by
10 mg once daily from

day 6 to day 10

GM Serum = 0.37
GM BALF = 0.36

BDG = 450
qPCR BALF = 31.7

A. fumigatus, culture
from BALF CASPO Died

47/M Multiple myeloma with
steroid therapy Probable No GM Serum = 0.09

BDG = 14
A. fumigatus, culture from

tracheal secretion None Died

Netherlands (6/31; 19.4%)ARDS [47]

83/M Cardiomyopathy Possible

Prednisolone
0·13 mg/kg/day for

28 days
pre-admission

GM Serum = 0.4 A. fumigatus, culture from
tracheal aspirate

VCZ + ANID (5/6)
L-AmB (1/6)

Died

67/M COPD (GOLD 3), Post RTx
NSCLC 2014 Possible

Prednisolone
0·37 mg/kg/day for

2 days
pre-admission

NA A. fumigatus, culture from
tracheal aspirate Died

75/M COPD (GOLD 2a) Probable No GM BALF = 4.0 A. fumigatus, culture
from BALF Died

43/M None Probable No GM Serum = 0.1 GM
BALF = 3.8 NA Alive

57/M Bronchial asthma Probable
Fluticasone

1·94 mcg/kg/day for
1 month pre-admission

GM Serum = 0.1
GM BALF = 1.6

A. fumigatus. culture
from BALF Died

58/M None Possible No NA Aspergillus spp. (S), culture
from sputum Alive

Belgium (7/20; 35%)ARDS [52]

86/M Hypercholesterinemia NA No GM serum = 0.1 A. flavus culture from
tracheal aspirate None Died

38/M Obesity, hypercholesterinemia Proven No GM serum = 0.3
GM BALF > 2.8 A. fumigatus culture from BALF VCZ, ISA Alive

62/M Diabetes Proven No GM serum = 0.2
GM BALF = 2 A. fumigatus culture from BALF VCZ Died

73/M Diabetes, obesity, hypertension,
hypercholesterinemia Proven No GM serum= 0.1

GM BALF > 2.8 A. fumigatus culture from BALF VCZ Alive

77/M Diabetes, chronic kidney disease,
hypertension, pemphigus foliaceus Proven Yes, ND GM serum = 0.1

GM BALF = 2.79 A. fumigatus culture from BALF VCZ Alive

55/M HIV, hypertension,
hypercholesterinemia NA No GM serum = 0.80

GM BALF = 0.69 Negative culture VCZ, ISA Died

75/M Acute myeloid leukemia NA No GM BALF = 2.63 A. fumigatus culture from BALF VCZ Died
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Table 1. Cont.

Country (Prevalence) COHORT [Ref] Age/Sex Underlying Conditions CAPA Classification Local/Systemic
Corticosteroid Use

GM (ODI)/Serum BDG
(pg/mL)/qPCR

Species (Voriconazole
Susceptibility Pattern) Treatment # Outcome

France (1)ARDS [57] 74/M

Myelodysplastic syndrome, CD8 +

T-cell lymphocytosis, Hashimoto’s
thyroiditis, hypertension, benign

prostatic hypertrophy

Putative No

First GM on tracheal
secretion = Negative
First qPCR = Positive
Second GM tracheal

secretion = NA
Second qPCR = Positive

Direct smear of the second
sample = branched

septate hyphae

A. fumigatus, culture of the
second tracheal secretion None Died

France (1/5; 20%)Mixed ICU [58] 80/M Thyroid cancer (patient presented
with ARDS) Putative NA No A. flavus, culture from

tracheal secretion VCZ→ ISA Died

Italy (1)ARDS [59] 73/M Diabetes, hypertension, obesity,
hyperthyroidism, atrial fibrillation Proven No

GM Serum = 8.6
qPCR from paraffin block

tissue = Positive

A. fumigatus, culture
from BALF L-AmB→ ISA Died

Austria (1)ARDS [60] 70/M

COPD (GOLD 2), obstructive sleep
apnea syndrome,

insulin-dependent type 2 diabetes
with end organ damage, arterial

hypertension, coronary heart
disease, and obesity

Putative Inhaled Budesonide
(400 mg per day)

GM Serum = Negative
BDG = Negative

LFD Positive from
endotracheal aspiration

A. fumigatus, culture from
endotracheal aspiration VCZ Died

Germany (2)ARDS [61]
80/M Suspected pulmonary fibrosis ND No GM Serum = 1.5

GM BALF = 6.3
A. fumigatus, culture

from BALF L-AmB Died

70/M None ND No GM Serum = Negative
GM BALF = 6.1

A. fumigatus, culture
from BALF L-AmB Died

Netherlands (1)ARDS [62] 74/F Polyarthritis, reflux, stopped
smoking 20 years ago Putative No

GM serum = Persistently < 0.5
GM tracheal aspirate = >3

BDG serum = 1590

A. fumigatus, culture from
tracheal aspirate

(R)TR34/L98HICZ = 16µg/mL,
VCZ = 2µg/mL, and

POSA = 0.5µg/ml

VCZ + CASPO→
Oral VCZ→

L-AmB
Died

Australia (1) ARDS [63] 66/F Hypertension, osteopenia,
ex-smoker (20 pack years) Putative No N/A A. fumigatus culture from

tracheal aspirate (3x)

VCZ +
Therapeutic Drug

monitoring
Alive

* All serum qPCR remained negative. # All dosages are standard dosages (e.g., VCZ 6 mg/kg bid Day 1, and 4 mg/kg bid starting Day 2) [64]. ARDS: acute respiratory distress syndrome; NA:
not applicable; ND: not determined; BALF: bronchoalveolar lavage fluid; BDG: beta-D-Glucan; COPD: chronic obstructive pulmonary disease; GM; galactomannan; GOLD: global initiative
for chronic obstructive lung disease; NSCLC: non-small-cell lung cancer; ODI: optical density index; RTx: radio therapy; LFD: lateral flow device; qPCR: quantitative real-time PCR; VCZ:
voriconazole; ISA: isavuconazole; CASPO: caspofungin; ANID: anidulafungin; L-AmB: liposomal amphotericin B; ICZ: itraconazole; POSA = posaconazole.
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Although detailed case series have not reported on antibiotic use among patients, broad-spectrum
antibiotics are presumed to be used in 75% of COVID-19 patients admitted to ICU [49]. Since the
human gut microbiome is a highly complicated structure of bacteria and fungi, although bacteria are
the most diverse constituents, the administration of antibiotics results in perturbation of microbiome
steady-state composition, which allows fungi to thrive, and may predispose the host to invasive fungal
infections once the immune system becomes impaired [65,66].

Underlying medical conditions may also predispose COVID-19 patients to develop CAPA.
Among the 35 CAPA cases published to date (Table 1), hypertension (17/35; 49%), diabetes (9/35; 26%),
obesity (8/35; 23%), COPD (5/35; 14%), heart diseases (5/35; 14%), hypercholesterinemia (4/35; 11%),
and asthma (3/35; 9%) were among the most prevalent comorbidities observed. While hypertension,
coronary heart diseases, and diabetes increase the risk of infection overall [67–69], structural lung
damage caused by COPD or asthma may particularly predispose patients to develop IPA [70].

4. CAPA Prevalence

Several studies from China reported high rates of Aspergillus infections among COVID-19 patients.
In one study from the Jiangsu province in China, 60/257 COVID-19 (23.3%) patients had throat swab
samples that tested positive for Aspergillus spp. and were reported as Aspergillus co-infections [8].
In another Chinese study from the Zhejiang province 8 of the 104 patients with COVID-19 (7.7%)
patients were reported to have IPA although questions remain regarding criteria used for diagnosing
IPA in this study (authors state EORTC/MSG criteria were used but all 8 patients seemingly lacked
host factors) [71]. Another study from China reported that 27% of the COVID-19 patients (13/48)
developed fungal infections but lacked further details [7]. In other reports from China, lower rates
of fungal infections were reported ranging between 3.2–5% [54,55,72]. None of those studies have
used specific definitions and standardized diagnostic algorithms to identify and define CAPA. In fact,
diagnosis of pulmonary aspergillosis is challenging with culture exhibiting limited sensitivity [73,74],
and galactomannan testing—the current gold standard—is rarely available in China [75]. As a result,
some of these reported rates are likely an underestimate of the real burden of IPA in patients with
COVID-19 requiring ICU admission, while other rates may be an overestimation due to potentially
misinterpreting Aspergillus colonization in the upper respiratory tract as Aspergillus infection.

More recently, several studies and case-series from Europe (France, Germany, Belgium, and the
Netherlands) have reported high rates of CAPA among COVID-19 cases with ARDS, ranging from
20–35% (Table 1) [47,50–52]. The development of CAPA was fairly rapid, with a median of 6 days
and range of 3–28 days after ICU admission [47,52]. Moreover, two additional CAPA cases have been
reported from Germany [61] and single cases have also been reported from the Netherlands [62],
Austria [60], Italy [59], Australia [63], and France [57,58] (Table 1). Among 35 CAPA cases reported
to date, there were a total of 5 proven cases [52,59]. The overall mortality rate was 63% (22/35),
among whom 4 were female (4/8; 50%) and 14 were male (18/27; 67%). The mortality in case series
reported from France, Germany, Belgium and Netherlands ranged between 44.5–66.7% [47,50–52].
Of particular importance was the 100% fatality rate of those with underlying diseases reported from the
Netherlands, while the two patients without underlying conditions both survived [47]. Noteworthy
is the fact that COVID-19 patients presented with ARDS typically fall into the elderly category [6],
whereas ARDS in those infected with influenza involves both children <5 years old and elderly >65
years old [76]. The difficulties in diagnosing CAPA, which are outlined in more detail in the next
section of this review, may also contribute to increased mortality rates. The most notable example
is a study from France [57], where both culture and serology assays were negative for the initial
respiratory samples and became only positive after the patient expired [57]. In a case from Italy,
initial BALF culture was positive for A. fumigatus but the treatment was delayed for two days and
only started after the serum galactomannan test became positive [59]. CAPA was later confirmed by
autopsy examination [59]. As a result, authors encouraged prompt initiation of systemic antifungal
therapy immediately after obtaining positive results even if Aspergillus is detected in samples from
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the upper respiratory tract [59]. Since azole resistance can be associated with a higher mortality rate
when compared to patients infected with azole susceptible A. fumigatus isolates, it is of paramount
importance to use antifungal susceptibility testing to inform targeted antifungal treatment, especially
in regions with high azole resistance [77]. Azole-resistant A. fumigatus isolates were also persistently
recovered from tracheal aspirates during the course of azole treatment in the most recent study from
the Netherlands implicated a CAPA case for whom [62]. The azole-resistant A. fumigatus isolate
(itraconazole, voriconazole, and posaconazole MICs were 16, 2, and 0.5 µg/mL, respectively) harbored
a well-known mutation, TR34/L98H [62], presumed to have been acquired from the environment [77].
The in vitro MIC value of the isolate obtained at day 19 (2 mg/L) was higher than the voriconazole
serum trough concentration measured on day 17 (1.43 mg/L) and despite switching voriconazole to
l-AmB, the patient died due to deteriorating health conditions [62]. Overall, A. fumigatus appeared to
be the most prevalent Aspergillus spp. isolated among respiratory samples with positive culture (26/29;
90%), followed by A. flavus (2/29; 7%).

5. Diagnostic Workup for Accurate Identification of CAPA

The optimal diagnostic algorithm for diagnosing CAPA is currently unknown, and this question
is actively being investigated in an ongoing multinational explorative trial in conjunction with the
European Confederation of Medical Mycology (ECMM). The most common methods to date include
attempting to recover Aspergillus spp. on culture media of bronchoalveolar fluid (BALF) and tracheal
aspirate, as well as utilizing serologic biomarker testing such as the conventional Galactomannan (GM)
from BALF, tracheal aspirate, and serum specimens. Other diagnostic tests that may prove useful also
include Aspergillus PCR, serum (1→3)-β-d-glucan (BDG), the Aspergillus galactomannan lateral flow
assay (LFA) (IMMY, Norman, Oklahoma, USA), and the Aspergillus-specific lateral-flow device (LFD)
test (OLM Diagnostics, Newcastle Upon Tyne, UK).

In published cases and case series from Germany [50,61], France [51,57,58], Italy [59], Austria [60],
Belgium [52], Australia [63], and the Netherlands [47], CAPA was most commonly mycologically
diagnosed by either culture from BALF or tracheal aspirate and/or based on a positive GM or LFD
from BALF or tracheal aspirate (Table 1). Across published cases, Aspergillus culture was positive
in 29/35 (83%) of patients; of those with a positive culture and a reported source, 16/29 (55%) were
recovered from—often undirected—BALF, 12/29 (41%) from tracheal aspirate, and 1/29 (3%) from
sputum. In those where a BALF GM test was performed, 14/23 (61%) had a titer ≥1.5 ODI and 16/23
(70%) a titer ≥0.5 ODI, while 6/28 (21%) of those with serum GM results had a titer > 0.5 ODI. PCR from
respiratory specimens or tissue was positive in 10/14 (71%) and LFD from tracheal secretion positive in
1/1 of patients.

Thus, BALF and tracheal aspirate culture and conventional GM testing from BALF appear to be
the most promising diagnostic modalities. Still, bronchoscopy can potentially aerosolize virus [78] in
patients with COVID-19 infection, thus posing a risk to patients and personnel from SARS-CoV-2 virus.
In many centers, the role of bronchoscopy is limited and testing from blood samples may be safer
and more optimal and allow also for twice weekly screening which has been implemented in many
centers [52], although the low levels of GM positivity from serum in these reports is discouraging,
and the sensitivity of serum BDG, which is less specific for IA, was only 44% (4/9).

6. CAPA Treatment—Current Paradigm

While it is currently unknown whether antifungal treatment of COVID-19 associated IPA translates
into a survival benefit, diagnosis should in most cases trigger early antifungal treatment. Outside the
hematologic malignancy setting, voriconazole remains the recommended first-line treatment for
IPA [79,80]. However, besides its narrow therapeutic window and the requirement for therapeutic
drug monitoring to ensure efficacy and prevent neuro and hepatotoxicity [81], drug–drug interactions
may particularly limit the use of voriconazole in the ICU setting [82]. Being metabolized via
CYP2C19, CYP2C9, and CYP3A4, voriconazole is among the drugs most frequently associated
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with major drug–drug interactions in the ICU [83]. Furthermore, it may show interactions with
experimental COVID-19 therapies, including hydroxychloroquine, atazanavir, lopinavir/ritonavir
and last but not least—although weaker—with remdesivir, which is also a substrate for CYP3A4,
although its metabolism is primarily mediated by hydrolase activity [84]. Isavuconazole and
liposomal amphotericin B are the primary alternative options for treatment of IPA in the ICU [79].
Compared to voriconazole, isavuconazole shows a more favorable pharmacokinetic profile, and is
associated with fewer toxicities. However, it is also metabolized via CYP3A4 and could therefore be
problematic, although drug–drug interactions are generally less a problem with isavuconazole than
with voriconazole [85,86]. Liposomal amphotericin B is a broadly effective alternative treatment option,
however, in the ICU renal insufficiency often complicates initiation or requires discontinuation of this
antifungal agent. This concern is particularly relevant for patients infected by SARS-CoV-2 which has
shown renal tropism and been described as a frequent cause of kidney injury [87]. While itraconazole
is now rarely used to treat invasive aspergillosis, it has been shown to exhibit some antiviral activity,
specifically as a cholesterol transport inhibitor, and was effective in a feline coronavirus model [88].
In addition, its novel oral SUBA formulation has great bioavailability [89], and itraconazole may
therefore be an alternative option for treating COVID-19 associated IPA, although it shares the
problem of drug–drug interactions with other triazoles. While currently available echinocandins are
not considered first-line treatment options for invasive aspergillosis due to their limited antifungal
activity against Aspergillus spp., they are generally well tolerated with limited drug–drug interactions
and show at least fungistatic activity against Aspergillus hyphae [90]. Furthermore, they synergistic
interactions with some other antifungals, making them an excellent choice for combination antifungal
therapy [90]. New antifungal classes currently under development, namely fosmanogepix and
olorofim [91], may have equal efficacy without the same burden of drug–drug interactions and toxicity,
and may therefore overcome the limitations of currently available antifungals and become the preferred
treatment options in the near future. If the reported high incidence of COVID-19 associated IPA in
ICU patients is confirmed in larger studies, there may be justification for prophylaxis trials, for which
not only triazoles and nebulized liposomal amphotericin B [52], but also another novel antifungal
currently under development, rezafungin (i.e., once weekly echinocandin with improved activity
against Aspergillus spp.), may be a candidate [92].

7. The Current Challenges and How to Tackle Them

Bacterial, fungal and viral secondary infections or co-infections affect mortality. Acinetobacter
baumanii, Klebsiella pneumonia and Aspergillus species are important nosocomial pathogens [93]
complicating the disease course. Studies from France [51], Germany [50], Belgium [52], and the
Netherlands [47], underline the role of CAPA. Diagnosing co-infections is complex and rapid diagnosis
plays a crucial role in this setting [49]. Close monitoring for infection development is needed, as well
as longitudinal sampling throughout the disease course using culture dependent and independent
techniques. Aspergillus antigen and PCR testing of respiratory fluids should be a routine procedure for
critically ill patients [94], specifically for those suffering from ARDS [50]. Co-infection with human
metapneumovirus has been reported in two of five cases in the German CAPA series [50]. It is unknown
whether hospitals caring for COVID-19 test comprehensive respiratory pathogen panels, and to date no
analysis of mixed viral infection in COVID-19 patients has been reported. In the context of COVID-19,
mixed viral infection may be misinterpreted as presence of innocent bystanders and thus remain
underreported. With bronchoalveolar lavage and autopsy regarded as high-risk procedures, key
diagnostic instruments are lacking. Autopsy studies are key to understanding pathophysiology of
COVID-19 [95] and are critically enlighten interaction between SARS-CoV-2 and different pathogens.
With availability of lower respiratory samples, normally obtained by BALF, the quality of microbiological
and virological work up would be greatly improved. Inspection of trachea and bronchi is achieved by
bronchoscopy, which is critical to find possible Aspergillus tracheobronchitis. Thus, physicians face
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the dilemma of taking the hazard of aerosolization of SARS-CoV-2, risking transmission versus the
endeavor of facilitating the optimal diagnosis and treatment to the patients entrusted to their care.

To this day, our understanding of the true impact of Aspergillus co-infections remains frustratingly
limited. Therefore, guidance on proper management of these high-risk procedures to prevent
transmission and super spreading of SARS-CoV-2 is needed. The European Confederation of Medical
Mycology initiated national multicenter studies aiming to explore the risk of fungal infections
during COVID-19 [94] and is currently working on diagnostic and treatment algorithms. Key goals
are to improve the outcome by avoiding misdiagnosis and by initiation of early and targeted
antifungal treatment.

8. Future Perspectives

We anticipate that autopsies of COVID-19 fatalities will increase and likely prove the clinical
relevance of CAPA [96]. Immune dysregulation together with epithelial lung damage stemming
from COVID-19 immunopathology is a likely mechanism predisposing for IPA development [97].
IPA will be recognized as important co-infection in patients with severe COVID-19, but incidence will
likely vary between different ICU settings. In settings where COVID-19 associated IPA occurs most
commonly, screening for IPA in blood and true BALF samples (i.e., obtained via bronchoscopy) will be
implemented followed by preemptive treatment in those with mycological evidence of IPA. In other
high-incidence settings, clinical antifungal prophylaxis trials will be conducted among COVID-19
patients admitted to the ICU aiming to show a decrease in putative [4] and proven IPA cases, as well as
overall mortality. Treatment trials will compare efficacy and safety of new antifungal drugs currently
under development with established antifungals, initiating a new era of antifungal treatment.
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