14,198 research outputs found

    Physical Transport and Chemical Behavior of Dispersed Oil

    Get PDF
    During response operations, scientific information is provided to decision makers, such as the Federal On-Scene Coordinator (FOSC), state and federal trustees, and the public. The decision to use chemical dispersants during a response is made among all these parties, and during the Deepwater Horizon (DWH) oil spill the dispersant discussion included both surface and subsurface application of chemical dispersants. This paper is intended to provide perspective on research needs considered pre- and post-DWH oil spill related to response modeling and data collection needs for decision support of dispersant application and its potential effects. Given time constraints for implementing models and sampling strategies for response, requirements for data and types of questions to be addressed may be significantly different than requirements for research or damage assessment activities. At the time of this writing, just over a year after the successful response operations to cap the well, many studies are still in progress, and data are still being collected and evaluated to assess dispersant effectiveness and possible impacts. More information and research results will become available over the next months to years. Thus these research needs, as summarized for this workshop, should be evaluated again at a later time

    Total-pressure measurement in pulsating flows

    Get PDF
    Pneumatic-type probe was used as comparison instrument with total pressure tubes to determine true average pressure and, thus, to determine if nonlinear averaging effects were significant. Since pneumatic probe is more complicated to use than a total-pressure tube, it is used only as a comparison instrument to determine extent of averaging effects

    Electrodynamic Structure of an Outer Gap Accelerator: Location of the Gap and the Gamma-ray Emission from the Crab Pulsar

    Get PDF
    We investigate a stationary pair production cascade in the outer magnetosphere of a spinning neutron star. The charge depletion due to global flows of charged particles, causes a large electric field along the magnetic field lines. Migratory electrons and/or positrons are accelerated by this field to radiate curvature gamma-rays, some of which collide with the X-rays to materialize as pairs in the gap. The replenished charges partially screen the electric field, which is self-consistently solved together with the distribution functions of particles and gamma-rays. If no current is injected at neither of the boundaries of the accelerator, the gap is located around the conventional null surface, where the local Goldreich-Julian charge density vanishes. However, we first find that the gap position shifts outwards (or inwards) when particles are injected at the inner (or outer) boundary. Applying the theory to the Crab pulsar, we demonstrate that the pulsed TeV flux does not exceed the observational upper limit for moderate infrared photon density and that the gap should be located near to or outside of the conventional null surface so that the observed spectrum of pulsed GeV fluxes may be emitted via a curvature process. Some implications of the existence of a solution for a super Goldreich-Julian current are discussed.Comment: 17 pages, 12 figures, submitted to Ap

    The effects of parasitism and body length on positioning within wild fish shoals

    Get PDF
    The influence of body length and parasitism on the positioning behaviour of individuals in wild fish shoals was investigated by a novel means of capturing entire shoals of the banded killifish (Fundulus diaphanus, Lesueur) using a grid-net that maintained the two-dimensional positions of individuals within shoals. Fish in the front section of a shoal were larger than those in the rear. Individuals parasitized by the digenean trematode (Crassiphiala bulboglossa, Haitsma) showed a tendency to occupy the front of shoals. Parasitized fish were also found more in peripheral positions than central ones in a significant number of shoals. Shoal geometry was affected by the overall parasite prevalence of shoal members; shoals with high parasite prevalence displayed increasingly phallanx-like shoal formations, whereas shoals with low prevalence were more elliptical. There was no relationship between body length and parasite abundance or prevalence in the fish population which suggests body length and parasite status are independent predictors of positioning behaviour. Solitary individuals found outside shoals were both more likely to be parasitized and had higher parasite abundance than individuals engaged in shoaling. Differences in the shoaling behaviour of parasitized and unparasitized fish are discussed in the context of the adaptive manipulation hypothesis

    Functional specialization of the yeast Rho1 GTP exchange factors

    Get PDF
    Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1

    A Markov Chain Monte Carlo approach for measurement of jet precession in radio-loud active galactic nuclei

    Get PDF
    © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Jet precession can reveal the presence of binary systems of supermassive black holes. The ability to accurately measure the parameters of jet precession from radio-loud AGN is important for constraining the binary supermassive black hole population, which are expected as a result of hierarchical galaxy evolution. The age, morphology, and orientation along the line of sight of a given source often result in uncertainties regarding jet path. This paper presents a new approach for efficient determination of precession parameters using a 2D MCMC curve-fitting algorithm which provides us a full posterior probability distribution on the fitted parameters. Applying the method to Cygnus A, we find evidence for previous suggestions that the source is precessing. Interpreted in the context of binary black holes leads to a constraint of parsec scale and likely sub-parsec orbital separation for the putative supermassive binary.Peer reviewe

    Nonlinear dynamo action in a precessing cylindrical container

    Get PDF
    It is numerically demonstrated by means of a magnetohydrodynamics (MHD) code that precession can trigger the dynamo effect in a cylindrical container. This result adds credit to the hypothesis that precession can be strong enough to be one of the sources of the dynamo action in some astrophysical bodies.Comment: 5 pages, 5 figures including subfigure

    Predictive protocol of flocks with small-world connection pattern

    Get PDF
    By introducing a predictive mechanism with small-world connections, we propose a new motion protocol for self-driven flocks. The small-world connections are implemented by randomly adding long-range interactions from the leader to a few distant agents, namely pseudo-leaders. The leader can directly affect the pseudo-leaders, thereby influencing all the other agents through them efficiently. Moreover, these pseudo-leaders are able to predict the leader's motion several steps ahead and use this information in decision making towards coherent flocking with more stable formation. It is shown that drastic improvement can be achieved in terms of both the consensus performance and the communication cost. From the industrial engineering point of view, the current protocol allows for a significant improvement in the cohesion and rigidity of the formation at a fairly low cost of adding a few long-range links embedded with predictive capabilities. Significantly, this work uncovers an important feature of flocks that predictive capability and long-range links can compensate for the insufficiency of each other. These conclusions are valid for both the attractive/repulsive swarm model and the Vicsek model.Comment: 10 pages, 12 figure
    corecore