11 research outputs found

    Diamond detectors for dose and instantaneous dose‐rate measurements for ultra‐high dose‐rate scanned helium ion beams

    Get PDF
    Background The possible emergence of the FLASH effect—the sparing of normal tissue while maintaining tumor control—after irradiations at dose-rates exceeding several tens of Gy per second, has recently spurred a surge of studies attempting to characterize and rationalize the phenomenon. Investigating and reporting the dose and instantaneous dose-rate of ultra-high dose-rate (UHDR) particle radiotherapy beams is crucial for understanding and assessing the FLASH effect, towards pre-clinical application and quality assurance programs. Purpose The purpose of the present work is to investigate a novel diamond-based detector system for dose and instantaneous dose-rate measurements in UHDR particle beams. Methods Two types of diamond detectors, a microDiamond (PTW 60019) and a diamond detector prototype specifically designed for operation in UHDR beams (flashDiamond), and two different readout electronic chains, were investigated for absorbed dose and instantaneous dose-rate measurements. The detectors were irradiated with a helium beam of 145.7 MeV/u under conventional and UHDR delivery. Dose-rate delivery records by the monitoring ionization chamber and diamond detectors were studied for single spot irradiations. Dose linearity at 5 cm depth and in-depth dose response from 2 to 16 cm were investigated for both measurement chains and both detectors in a water tank. Measurements with cylindrical and plane-parallel ionization chambers as well as Monte-Carlo simulations were performed for comparisons. Results Diamond detectors allowed for recording the temporal structure of the beam, in good agreement with the one obtained by the monitoring ionization chamber. A better time resolution of the order of few μs was observed as compared to the approximately 50 μs of the monitoring ionization chamber. Both diamonds detectors show an excellent linearity response in both delivery modalities. Dose values derived by integrating the measured instantaneous dose-rates are in very good agreement with the ones obtained by the standard electrometer readings. Bragg peak curves confirmed the consistency of the charge measurements by the two systems. Conclusions The proposed novel dosimetric system allows for a detailed investigation of the temporal evolution of UHDR beams. As a result, reliable and accurate determinations of dose and instantaneous dose-rate are possible, both required for a comprehensive characterization of UHDR beams and relevant for FLASH effect assessment in clinical treatments

    Development and benchmarking of a dose rate engine for raster‐scanned FLASH helium ions

    Get PDF
    Background:Radiotherapy with charged particles at high dose and ultra-highdose rate (uHDR) is a promising technique to further increase the therapeuticindex of patient treatments. Dose rate is a key quantity to predict the so-calledFLASH effect at uHDR settings. However, recent works introduced varying cal-culation models to report dose rate,which is susceptible to the delivery method,scanning path (in active beam delivery) and beam intensity.Purpose:This work introduces an analytical dose rate calculation engine forraster scanned charged particle beams that is able to predict dose rate from theirradiation plan and recorded beam intensity. The importance of standardizeddose rate calculation methods is explored here.Methods:Dose is obtained with an analytical pencil beam algorithm, usingpre-calculated databases for integrated depth dose distributions and lateralpenumbra. Dose rate is then calculated by combining dose information withthe respective particle fluence (i.e., time information) using three dose-rate-calculation models (mean, instantaneous, and threshold-based). Dose ratepredictions for all three models are compared to uHDR helium ion beam (145.7MeV/u, range in water of approximatively 14.6 cm) measurements performe

    Dosimetry for new radiation therapy approaches using high energy electron accelerators

    Get PDF
    We have performed dosimetry studies using electron beams with energies up to 50 MeV, which exceed current clinical energy ranges and approaches the bottom end of the very high energy electron range. 50 MeV electron beams can reach deep-seated tumors. In contrast to photon beams, electron beams can be generated with ultra-high dose rates by linear accelerators, which could enable FLASH radiotherapy of deep-seated tumors. The response of radiochromic film and alanine is compared with dose measurements using an ionisation chamber. Energy dependence is not observed within the measurement uncertainty in the investigated energy range from 15 to 50 MeV

    Development of an ultra-thin parallel plate ionization chamber for dosimetry in FLASH radiotherapy

    Get PDF
    Conventional air ionization chambers (ICs) exhibit ion recombination correction factors that deviate substantially from unity when irradiated with dose per pulse magnitudes higher than those used in conventional radiotherapy. This fact makes these devices unsuitable for the dosimetric characterization of beams in ultra-high dose per pulse as used for FLASH radiotherapyParticipating States; Horizon 2020; European Metrology Programme for Innovation and Research, Grant/Award Number: 18HLT04UHD PulseS

    VHEE beam dosimetry at CERN Linear Electron Accelerator for Research under ultra-high dose rate conditions

    No full text
    The aim of this work is the dosimetric characterization of a plane parallel ionization chamber under defined beam setups at the CERN Linear Electron Accelerator for Research (CLEAR). A laser driven electron beam with energy of 200 MeV at two different field sizes of approximately 3.5 mm FWHM and approximately 7 mm FWHM were used at different pulse structures. Thereby the dose-per-pulse range varied between approximately 0.2 and 12 Gy per pulse. This range represents approximately conventional dose rate range beam conditions up to ultra-high dose rate (UHDR) beam conditions. The experiment was based on a water phantom which was integrated into the horizontal beamline and radiochromic films and an Advanced Markus ionization chamber was positioned in the water phantom. In addition, the experimental setup were modelled in the Monte Carlo simulation environment FLUKA. In a first step the radiochromic film measurements were used to verify the beamline setup. Depth dose distributions and dose profiles measured by radiochromic film were compared with Monte Carlo simulations to verify the experimental conditions. Second, the radiochromic films were used for reference dosimetry to characterize the ionization chamber. In particular, polarity effects and the ion collection efficiency of the ionization chamber were investigated for both field sizes and the complete dose rate range. As a result of the study, significant polarity effects and recombination loss of the ionization chamber were shown and characterized. However, the work shows that the behavior of the ionization chamber at the laser driven beam line at the CLEAR facility is comparable to classical high dose-per-pulse electron beams. This allows the use of ionization chambers on the CLEAR system and thus enables active dose measurement during the experiment. Compared to passive dose measurement with film, this is an important step forward in the experimental equipment of the facility

    Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams

    No full text
    PURPOSE: A diamond detector prototype was recently proposed by Marinelli et al. (Medical Physics 2022, https://doi.org/10.1002/mp.15473) for applications in ultrahigh‐dose‐per‐pulse (UH‐DPP) and ultrahigh‐dose‐rate (UH‐DR) beams, as used in FLASH radiotherapy (FLASH‐RT). In the present study, such so‐called flashDiamond (fD) was investigated from the dosimetric point of view, under pulsed electron beam irradiation. It was then used for the commissioning of an ElectronFlash linac (SIT S.p.A., Italy) both in conventional and UH‐DPP modalities. METHODS: Detector calibration was performed in reference conditions, under (60)Co and electron beam irradiation. Its response linearity was investigated in UH‐DPP conditions. For this purpose, the DPP was varied in the 1.2–11.9 Gy range, by changing either the beam applicator or the pulse duration from 1 to 4 μs. Dosimetric validation of the fD detector prototype was then performed in conventional modality, by measuring percentage depth dose (PDD) curves, beam profiles, and output factors (OFs). All such measurements were carried out in a motorized water phantom. The obtained results were compared with the ones from commercially available dosimeters, namely, a microDiamond, an Advanced Markus ionization chamber, a silicon diode detector, and EBT‐XD GAFchromic films. Finally, the fD detector was used to fully characterize the 7 and 9 MeV UH‐DPP electron beams delivered by the ElectronFlash linac. In particular, PDDs, beam profiles, and OFs were measured, for both energies and all the applicators, and compared with the ones from EBT‐XD films irradiated in the same experimental conditions. RESULTS: The fD calibration coefficient resulted to be independent from the investigated beam qualities. The detector response was found to be linear in the whole investigated DPP range. A very good agreement was observed among PDDs, beam profiles, and OFs measured by the fD prototype and reference detectors, both in conventional and UH‐DPP irradiation modalities. CONCLUSIONS: The fD detector prototype was validated from the dosimetric point of view against several commercial dosimeters in conventional beams. It was proved to be suitable in UH‐DPP and UH‐DR conditions, for which no other commercial real‐time active detector is available to date. It was shown to be a very useful tool to perform fast and reproducible beam characterizations in standard clinical motorized water phantom setups. All of the previously mentioned demonstrate the suitability of the proposed detector for the commissioning of UH‐DR linac beams for preclinical FLASH‐RT applications
    corecore