178 research outputs found

    Acid-induced Unfolding of the Amino-terminal Domains of the Lethal and Edema Factors of Anthrax Toxin

    Get PDF
    The two enzymatic components of anthrax toxin, lethal factor (LF) and edema factor (EF), are transported to the cytosol of mammalian cells by the third component, protective antigen (PA). A heptameric form of PA binds LF and/or EF and, under the acidic conditions encountered in endosomes, generates a membrane-spanning pore that is thought to serve as a passageway for these enzymes to enter the cytosol. The pore contains a 14-stranded transmembrane b-barrel that is too narrow to accommodate a fully folded protein, necessitating that LF and EF unfold, at least partly, in order to pass. Here, we describe the pH-dependence of the unfolding of LF N and EF N , the 30 kDa N-terminal PA-binding domains, and minimal translocatable units, of LF and EF. Equilibrium chemical denaturation studies using fluorescence and circular dichroism spectroscopy show that each protein unfolds via a fourstate mechanism: N4I4J4U. The acid-induced N/I transition occurs within the pH range of the endosome (pH 5-6). The I state predominates at lower pH values, and the J and U states are populated significantly only in the presence of denaturant. The I state is compact and has characteristics of a molten globule, as shown by its retention of significant secondary structure and its ability to bind an apolar fluorophore. The N/I transition leads to an overall 60% increase in buried surface area exposure. The J state is expanded significantly and has diminished secondary structure content. We analyze the different protonation states of LF N and EF N in terms of a linked equilibrium proton binding model and discuss the implications of our findings for the mechanism of acidic pH-induced translocation of anthrax toxin. Finally, analysis of the structure of the transmembrane b-barrel of PA shows that it can accommodate a-helix, and we suggest that the steric constraints and composition of the lumen may promote a-helix formation

    Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices

    Get PDF
    BackgroundEmissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments.MethodsSize-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100μg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8mm diameter lung slices from CD-1 mice were exposed (11μg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound.ResultsOn an equi-mass basis, coarse ENCF-1PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB.ConclusionsThe findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations

    Impact of anaemia on acute stroke outcomes depends on the type of anaemia: Evidence from a UK stroke register

    Get PDF
    Background: Previous research has demonstrated an association between anaemia and poor outcomes in acute stroke. This study aimed to assess the impact of anaemia on stroke by anaemia subtype. Methods: Data from a prospective UK Regional Stroke Register were used to assess the association between hypochromic microcytic and normochromic normocytic anaemia on inpatient-mortality, length of stay (LOS) and discharge modified Rankin scale (mRS). Analysis was stratified by stroke subtypes and multivariable logistic regression, adjusting for potential confounders, was used to quantify this association. Patients who were not anaemic were the reference category. Results: A total of 8167 stroke patients (admitted between 2003 and 2015) were included, mean age (SD) 77.39 ± 11.90 years. Of these, 3.4% (n = 281) had hypochromic microcytic anaemia and 15.5% (n = 1262) had normochromic normocytic anaemia on admission. Normochromic normocytic anaemia was associated with increased odds of in-patient mortality OR 1.48 (1.24–1.77), 90-day mortality OR 1.63 (1.38–1.92), longer LOS OR 1.21 (1.06–1.40), defined as > 7 days, and severe disability defined as discharge mRS ≥ 3 OR 1.31 (1.06–1.63), in patients with ischaemic stroke. Hypochromic microcytic anaemia was associated with 90-day mortality OR 1.90 (1.40–2.58) and a longer LOS OR 1.57 (1.20–2.05) in patients with ischaemic stroke. Conclusions: Hypochromic microcytic and normochromic normocytic anaemia are associated with differing outcomes in terms of inpatient mortality and post stroke disability. While it is unclear if anaemia per se or another underlying cause is responsible for adverse outcomes, subtype of anaemia appears to be relevant in stroke prognosis

    Anthrax Toxin Receptor 2 Determinants that Dictate the pH Threshold of Toxin Pore Formation

    Get PDF
    The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA) toxin subunit from forming pores until exposure to low pH. PA forms pores at pH ∼6.0 or below when it is bound to ANTXR1, but only at pH ∼5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation

    Evidence against a Human Cell-Specific Role for LRP6 in Anthrax Toxin Entry

    Get PDF
    The role of the cellular protein LRP6 in anthrax toxin entry is controversial. Previous studies showed that LRP6 was important for efficient intoxication of human M2182 prostate carcinoma cells but other studies performed with cells from gene-knockout mice demonstrated no role for either LRP6 or the related LRP5 protein in anthrax toxin entry. One possible explanation for this discrepancy is that LRP6 may be important for anthrax toxin entry into human, but not mouse, cells. To test this idea we have investigated the effect of knocking down LRP6 or LRP5 expression with siRNAs in human HeLa cells. We show here that efficient knockdown of either LRP6, LRP5, or both proteins has no influence on the kinetics of anthrax lethal toxin entry or MEK1 substrate cleavage in these cells. These data argue against a human-specific role for LRP6 in anthrax toxin entry and suggest instead that involvement of this protein may be restricted to certain cell types independently of their species of origin
    corecore