1,261 research outputs found

    Design Development Test and Evaluation (DDT and E) Considerations for Safe and Reliable Human Rated Spacecraft Systems

    Get PDF
    A team directed by the NASA Engineering and Safety Center (NESC) collected methodologies for how best to develop safe and reliable human rated systems and how to identify the drivers that provide the basis for assessing safety and reliability. The team also identified techniques, methodologies, and best practices to assure that NASA can develop safe and reliable human rated systems. The results are drawn from a wide variety of resources, from experts involved with the space program since its inception to the best-practices espoused in contemporary engineering doctrine. This report focuses on safety and reliability considerations and does not duplicate or update any existing references. Neither does it intend to replace existing standards and policy

    Third-Generation W(CNAr)₆ Photoreductants (CNAr = Fused-Ring and Alkynyl-Bridged Arylisocyanides)

    Get PDF
    Homoleptic tungsten(0) arylisocyanides possess photophysical and photochemical properties that rival those of archetypal ruthenium(II) and iridium(III) polypyridine complexes. Previous studies established that extending the π-system of 2,6-diisopropylphenylisocyanide (CNDipp) by coupling aryl substituents para to the isocyanide functionality results in W(CNDippAr)₆ oligoarylisocyanide complexes with greatly enhanced metal-to-ligand charge transfer (MLCT) excited-state properties relative to those of W(CNDipp)₆. Extending electronic modifications to delineate additional design principles for this class of photosensitizers, herein we report a series of W(CNAr)₆ compounds with naphthalene-based fused-ring (CN-1-(2-ⁱPr)-Naph) and CNDipp-based alkynyl-bridged (CNDipp^(CC)Ar) arylisocyanide ligands. Systematic variation of the secondary aromatic system in the CNDippCCAr platform provides a straightforward method to modulate the photophysical properties of W(CNDipp^(CC)Ar)₆ complexes, allowing access to an extended range of absorption/luminescence profiles and highly reducing excited states, while maintaining the high molar absorptivity MLCT absorption bands, high photoluminescence quantum yields, and long excited-state lifetimes of previous W(CNAr)₆ complexes. Notably, W(CN-1-(2-iPr)-Naph)₆ exhibits the longest excited-state lifetime of all W(CNAr)₆ complexes explored thus far, highlighting the potential benefits of utilizing fused-ring arylisocyanide ligands in the construction of tungsten(0) photoreductants
    corecore