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1. Introduction

1.1. Weil-Petersson metric on the moduli space of curves. The
classical theory of the moduli space of compact Riemann surfaces of a fixed
genus g > 1 includes the investigation of the Weil-Petersson metric. Briefly,
consider any compact Riemann surface X of genus g > 1, which represents
a point in the moduli space Mg of such objects. Then, the tangent space to
X inMg is naturally dual to H0(X, Ω2

X), the C-vector space of holomorphic
quadratic differentials on X. Let µ be a smooth, positive (1, 1)-form on X
corresponding to a smooth metric on X. For any ω, η ∈ H0(X, Ω2

X), the
classical Weil-Petersson inner product is defined by

〈ω, η〉 =
i

2

∫

X

(ω ∧ η) · µ−1 . (1)

By duality, a metric on the tangent space of Mg at the point represented
by X is induced by (1). When taking µ to be the (1, 1)-form µhyp asso-
ciated to the hyperbolic metric on X, one obtains the classically studied
Weil-Petersson metric on Mg; basic questions such as the completeness,
curvature, and Kählerian aspects of the Weil-Petersson metric on Mg are
well-known (see [5], e.g., and references therein).

1.2. Arakelov metrics on Riemann surfaces. Much of the existing
literature focuses on the Weil-Petersson metric on Mg, which is induced
from the family of hyperbolic metrics on the underlying universal family of
Riemann surfaces. Indeed, from the uniformization theorem, the family of
hyperbolic metrics is a natural candidate from which one can form the as-
sociated Weil-Petersson metric on Mg. However, other points of view yield
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different families of metrics, and each family of metrics has an associated
Weil-Petersson metric on Mg.
The family of canonical metrics µcan arises from classical algebraic geometry
when embedding X into its Jacobian variety via the Abel-Jacobi map, and
the articles [3], [4] initiated the study of the corresponding Weil-Petersson
metric on Mg. From arithmetic algebraic geometry, one has the family of
Arakelov metrics µAr, as defined in [1], which provides yet another candidate
of metrics from which one can form a Weil-Petersson metric on Mg. In [3]
and [4], the authors posed the problem of developing a means by which one
can study the resulting Arakelov-induced metric on Mg. Specifically, it is
asked if the Arakelov-induced metric on the moduli space Mg is complete
or not, which in the case of the classical Weil-Petersson metric was first
answered in [13] and [11].

1.3. The main result. The purpose of the present paper is to answer
the problem posed in [3] and [4] concerning the Arakelov-induced metric
on Mg. The main result we prove in this article is the following. Let
Xt (t ∈ C, |t| < 1) be a family of compact Riemann surfaces of fixed
genus g > 1 degenerating at t = 0, and, hence, approaching the Deligne-
Mumford boundary of the moduli space Mg; let µAr,t, resp. µhyp,t be
the corresponding family of (1, 1)-forms associated to the Arakelov, resp.
hyperbolic metric. Then, we have

lim
t→0

(
sup
z∈Xt

(
µAr,t(z)
µhyp,t(z)

))
= 0 .

As a corollary of this result, we prove that the Arakelov-induced metric on
Mg is not complete.

1.4. Outline of the paper. In section 2, we establish notation and
recall various known results, most importantly for our purposes here is sec-
tion 2.4, which expresses φAr = log(µAr/µhyp), the conformal factor relating
the Arakelov metric to the hyperbolic metric, in terms of the hyperbolic heat
kernel, a result which has been proved in [9]. In section 3, we study each
quantity in the formula for φAr. Ultimately, we bound φAr using known
results for the hyperbolic heat kernel on a degenerating family of compact
Riemann surfaces of genus g > 1, most notably from [10]. Finally, in sec-
tion 4, we show how our main theorem answers the question of completeness
of the Arakelov-induced metric on Mg.



NON-COMPLETENESS OF THE ARAKELOV-INDUCED METRIC 3

2. Background material

2.1. Hyperbolic and canonical metrics. Let X be a compact Riemann
surface of genus g > 1. By the uniformization theorem, we can identify X
complex analytically with the quotient space Γ\H, where Γ is a Fuchsian
subgroup of the first kind of PSL2(R) acting by fractional linear transfor-
mations on the upper half-plane H = {z ∈ C | Im(z) > 0}. In a slight abuse
of notation, we will throughout this article identify X with a fundamen-
tal domain (say, a Ford domain, bounded by geodesic paths) and identify
points on X with their pre-images in H. Let µ denote a smooth, positive
(1, 1)-form on X corresponding to a smooth metric on X. We write volµ(X)
for the volume of X with respect to µ. In particular, we let µhyp denote the
(1, 1)-form corresponding to the hyperbolic metric on X, which is compat-
ible with the complex structure of X, and has constant negative curvature
equal to minus one. As a shorthand, we write vhyp for the hyperbolic volume
volµhyp(X); we recall that vhyp = 4π(g − 1).
Let H0(X, Ω1

X) denote the C-vector space of holomorphic 1-forms equipped
with the Petersson inner product given by

〈ω, η〉 =
i

2

∫

X

ω ∧ η
(
ω, η ∈ H0(X, Ω1

X)
)
.

By choosing an orthonormal basis {ω1, . . . , ωg} of H0(X, Ω1
X) with respect

to the Petersson inner product, the canonical metric of X has the associated
(1, 1)-form

µcan =
1
g
· i

2

g∑

j=1

ωj ∧ ωj .

We note that the canonical metric measures the volume of X to be one,
and, furthermore, µcan is independent of the choice of orthonormal basis of
H0(X, Ω1

X).
We write ∆hyp for the hyperbolic Laplacian on X, which acts on smooth
functions, and we let {φn}∞n=0 denote an orthonormal basis of eigenfunctions
of ∆hyp on X with corresponding eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . . ,

i.e.,
∆hypφn = λnφn (n = 0, 1, 2, . . .).

2.2. Green’s functions and Arakelov metrics. We denote the Green’s
function associated to the metric µ by gµ. It is a function on X × X
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characterized by the two properties

dzdc
zgµ(z, w) + δw(z) =

µ(z)
volµ(X)

,

∫

X

gµ(z, w)µ(z) = 0 (w ∈ X).

Assuming that z, w are points on X, which are sufficiently close, our con-
vention for the Green’s function is such that the sum gµ(z, w)+ log |z−w|2
is bounded as w approaches z. By means of the function Gµ = exp(gµ),
we now define the residual metric ‖ · ‖µ,res on the canonical line bundle Ω1

X

associated to µ by

‖dz‖2µ,res = lim
w→z

(
Gµ(z, w) · |z − w|2) .

The (1, 1)-form associated to the residual metric is then given by

µres(z) =
i

2
· dz ∧ dz̄

‖dz‖2µ,res

.

In particular, following [1], we define the Arakelov metric form µAr to be
the (1, 1)-form associated to the residual metric of the canonical metric; the
corresponding metric on Ω1

X is denoted by ‖ ·‖Ar. The conformal factor φAr

is the C∞-function on X defined by the equation

µAr = eφArµhyp .

2.3. Heat kernels and heat traces. The heat kernel KH(t; z, w) on H
(t ∈ R>0; z, w ∈ H) is given by the formula

KH(t; z, w) = KH(t; ρ) =
√

2e−t/4

(4πt)3/2

∞∫

ρ

re−r2/4t

√
cosh(r)− cosh(ρ)

dr ,

where ρ = dH(z, w) denotes the hyperbolic distance between z and w.
Evidentially, KH(t; z, w) > 0 for t > 0 and z, w ∈ H. The heat kernel
Khyp(t; z, w) associated to X (t ∈ R>0; z, w ∈ X) is defined by averaging
over the elements of Γ, namely

Khyp(t; z, w) =
∑

γ∈Γ

KH(t; z, γw) .

For t > 0 and z ∈ X, we let

HKhyp(t; z) = Khyp(t; z, z)−KH(t; 0) =
∑
γ∈Γ
γ 6=id

KH(t; z, γz) .
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Let us define the function

F (z) =

∞∫

0

(
HKhyp(t; z)− 1

vhyp

)
dt . (2)

From standard results regarding the asymptotic behavior of the heat kernel
for t → 0 and t →∞, the integral defining F converges for all z ∈ X. Since
X is compact, the heat kernel admits the spectral expansion

Khyp(t; z, w) =
∞∑

n=0

φn(z)φn(w)e−λnt ,

which can be shown to converge uniformly and absolutely on X. The hy-
perbolic heat trace HTrKhyp(t) (t ∈ R>0) is now given by

HTrKhyp(t) =
∫

X

HKhyp(t; z) µhyp(z) .

The logarithmic derivative of the Selberg zeta function ZSel(s) associated to
X is defined by the Gauss transform of the hyperbolic heat trace, namely

Z ′Sel

ZSel
(s) = (2s− 1)

∞∫

0

HTrKhyp(t)e−s(s−1)t dt ,

which converges for Re(s(s− 1)) > 0 and, when combined with the spectral
expansion of the heat kernel, can be used to obtain the analytic continuation
of ZSel(s). Of particular interest is the constant

cSel = lim
s→1

(
Z ′Sel

ZSel
(s)− 1

s− 1

)
,

which is analogous to the classical η-function as realized via the Kronecker
limit formula. From [7], Lemma 4.2, we recall that one has the explicit
formula for cSel in terms of the hyperbolic heat trace, namely

cSel = 1 +

∞∫

0

(HTrKhyp(t)− 1) dt =

∞∫

0

(HTrKhyp(t)− 1 + e−t) dt .

2.4. Arakelov invariants using hyperbolic geometry. Numerous au-
thors have studied the analytic invariants from the Arakelov theory of al-
gebraic curves with the goal of obtaining expressions for the various quan-
tities, including: the canonical metric, the canonical Green’s function, the
Arakelov metric, and Faltings’s delta function. Beginning with [6] and [12],
all authors relied on algebraic geometry and used the Riemann theta func-
tion as the fundamental object from which various identities were derived.
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In [9], new relations were derived relating the analytic invariants of the
Arakelov theory of curves to the hyperbolic heat kernel. For the present
paper, we will work with the following result, first proved in [9] (see also
[8]). If X is any compact Riemann surface of genus g > 1, then, in the
notation of the previous section, we have

φAr(z)=−4π

(
1− 1

g

)
F (z)− π

g2

∫

X

F (z)∆hypF (z)µhyp(z)− cSel − 1
g(g − 1)

− log(4) .

(3)
The proof of (3) follows from more fundamental formulas which relate µcan

to µhyp and gcan to ghyp; these proofs are given in [8], [9], and will not
be repeated here. Also, we note that other results from [9] yield explicit
expressions for the canonical Green’s function, Faltings’s delta function, and
the canonical metric form in terms of the hyperbolic heat kernel.

2.5. Degenerating families of Riemann surfaces. By a degenerating
family of compact Riemann surfaces Xt (t ∈ D = {t ∈ C | |t| < 1}), we mean
a holomorphic map of D into the stably (Deligne-Mumford) compactified
moduli space such that the restriction of this map to the punctured disc
D \{0} is a holomorphic map into the moduli space Mg. The fiber over the
origin t = 0 of the embedded disc is a noded algebraic curve. We refer the
reader to [2] for an explicit construction of degenerating families of Riemann
surfaces. Although the discussion in [2] focuses on degenerating families
with a single developing node, the methodology immediately extends to the
general setting of an arbitrary number of developing nodes. If each surface
in the family Xt is given its unique hyperbolic metric, then we call the
family a degenerating family of compact hyperbolic Riemann surfaces. The
family can be parameterized either by the complex parameter t ∈ D or the
vector ` of lengths of pinching hyperbolic geodesics. We refer the reader to
[6], [10], and references therein for further discussion.

3. Asymptotic behavior of the Arakelov conformal factor

In this section we estimate the terms in (3), which involve the hyperbolic
heat kernel.

3.1. Lemma. For any compact Riemann surface X of genus g > 1, we
have the bound ∫

X

F (z)∆hypF (z)µhyp(z) ≥ 0 .
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Proof. Since X is compact, we can expand F in terms of the orthonormal
basis of eigenfunctions {φn}∞n=0 of ∆hyp with the non-negative eigenvalues
{λn}∞n=0, i.e.,

F (z) =
∞∑

n=0

anφn(z),

from which we derive

∆hypF (z) =
∞∑

n=1

λnanφn(z),

taking into account that λX,0 = 0. Therefore, we have the equality

∫

X

F (z)∆hypF (z)µhyp(z) =
∞∑

n=1

λna2
n ,

from which the assertion in the statement of the lemma follows since λn ≥ 0
for all n. ¤

3.2. Lemma. For any compact Riemann surface X of genus g > 1, we
have the bound

F (z) ≥ − 1
vhyp

−
∞∫

1

KH(t; 0) dt .

Proof. If t ≥ 1, we have the bound

HKhyp(t; z)− 1
vhyp

= Khyp(t; z, z)− 1
vhyp

−KH(t; 0) =

∞∑
n=1

φn(z)2e−λnt −KH(t; 0) ≥ −KH(t; 0) ,

which simply uses the positivity of the sum of squares of eigenfunctions. If
0 < t ≤ 1, we trivially have

HKhyp(t; z)− 1
vhyp

≥ − 1
vhyp

,

which, using the positivity of KH(t; z, w), follows immediately from the pos-
itivity of HKhyp(t; z). With these bounds, the result immediately follows
from the integral (2), which defines F (z). ¤
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3.3. Corollary. For any compact Riemann surface X of genus g > 1, we
have the bound

log
(

µAr(z)
µhyp(z)

)
=φAr(z) ≤ 4π

(
1− 1

g

)∞∫

1

KH(t; 0) dt− cSel

g(g − 1)
+

1
g − 1

−log(4) .

Proof. By combining the bounds in Lemma 3.1 and Lemma 3.2 with (3),
we immediately arrive at the inequality

φAr(z) ≤ 4π

(
1− 1

g

) 
 1

vhyp
+

∞∫

1

KH(t; 0) dt


− cSel − 1

g(g − 1)
− log(4) .

The bound follows by combining the constants, namely by showing that

4π

(
1− 1

g

)
1

vhyp
+

1
g(g − 1)

=
1

g − 1
,

which comes from vhyp = 4π(g − 1). ¤

3.4. Lemma. Let Xt be a degenerating family of compact hyperbolic Rie-
mann surfaces of genus g > 1. Writing cSel,t for the constants cSel associated
to Xt, we have

lim
t→0

cSel,t = ∞ .

Proof. The lemma is a direct consequence of [10], Theorem 4.5, p. 657,
which we will briefly describe for the sake of completeness.
Writing Xt = Γt\H, and given εgeo > 0, resp. εev > 0, we let

Ggeo = {γ ∈ Γt | γ 6= id, primitive, non-conjugate, `γ < εgeo} , resp.

Gev = {λn,t |λn,t eigenvalues of ∆hyp on Xt, 0 < λn,t < εev} ;

here `γ denotes the hyperbolic length of the primitive geodesic associated
to γ ∈ Γt. Choosing εgeo sufficiently small, and εev < 1/4, the above cited
theorem of [10] gives the following asymptotic formula for the quantity cSel,t,
as t approaches zero:

cSel,t =
∞∑

n=1

∑

γ∈Ggeo

`γ

en`γ − 1
+

∑

λn,t∈Gev

1
λn,t

+ Oεgeo,εev(1).

We recall from [10] (and the references therein) that as t approaches zero,
each `γ approaches zero for γ ∈ Ggeo. Now, there exists x0 > 0 such that
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for 0 < x < x0, the inequality ex − 1 ≤ 2x holds. With this in mind, we
obtain the bound

cSel,t ≥
∑

γ∈Ggeo

∑

n<x0/`γ

1
2n

+
∑

λn,t∈Gev

1
λn,t

+ Oεgeo,εev(1).

Using the positivity of the eigenvalues and the divergence of the harmonic
series, the proof of the lemma is now complete. ¤

3.5. Theorem. Let Xt be a degenerating family of compact hyperbolic
Riemann surfaces of genus g > 1. Writing µhyp,t, resp. µAr,t for the (1, 1)-
forms µhyp, resp. µAr associated to Xt, we have

lim
t→0

(
sup
z∈Xt

(
µAr,t(z)
µhyp,t(z)

))
= 0 .

Proof. Combine Corollary 3.3 and Lemma 3.4. ¤

3.6. Remark. The analysis given in [6] and [12] do not seem sufficient to
prove Theorem 3.5. More specifically, although the asymptotic behavior of
µAr,t is established for points which are bounded away from the developing
nodes, the results in [6] and [12] do not establish bounds for µAr,t/µhyp,t

in neighborhoods of the developing nodes. As a consequence, it seems that
Theorem 3.5 does not follow easily, if at all, from the results in [6] and [12].

4. The Arakelov-induced metric on moduli space

We show in this section how Theorem 3.5 can be used to study the metric
on the moduli space Mg near the Deligne-Mumford boundary.

4.1. Arakelov-induced metric on the moduli space. As before, let X
denote a compact Riemann surface of genus g > 1. Then, the C-vector space
H0(X, Ω2

X) of holomorphic quadratic differentials on X has dimension (3g−
3). Its dual space H0(X, Ω2

X)∨ consists of harmonic Beltrami differentials;
it represents the tangent space to the point corresponding to X in the
appropriate Teichmüller space Tg. The Arakelov-induced inner product 〈·, ·〉
on H0(X, Ω2

X)∨ is defined by

〈µ, ν〉 =
i

2

∫

X

(µ ∧ ν) · µAr

(
µ, ν ∈ H0(X, Ω2

X)∨
)
.

To be precise, the Arakelov metric µAr on X induces a metric on the Te-
ichmüller space Tg of marked Riemann surfaces of genus g > 1; we use
the term “marked” to denote that a canonical basis of the homology group
H1(X,Z) has been chosen. However, the Arakelov metric is independent of
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the marking chosen, which is evident since the canonical metric, hence the
canonical Green’s function, is independent of any marking chosen. Conse-
quently, the Arakelov-induced metric on the Teichmüller space descends to
a metric on the moduli space Mg.

4.2. Theorem. The Arakelov-induced metric on Mg is not complete.

Proof. Consider a degenerating family Xt of compact Riemann surfaces of
genus g > 1, whose limiting surface X0 corresponds to a reducible, uninoded
algebraic curve, i.e., in the language of hyperbolic geometry, the family Xt

has a single pinching geodesic which separates each Riemann surface into
two components. Let LMg,hyp(Xt), resp. LMg,Ar(Xt) denote the length of
the path in Mg associated to the family Xt measured using the hyperbolic-
induced, resp. Arakelov-induced metric on Mg. In [11], it is shown that
LMg,hyp(Xt) is finite, i.e., the Weil-Petersson metric associated to the fam-
ily of hyperbolic metrics is not complete. Now, for a fixed point in Mg,
corresponding to the Riemann surface X, we can write

〈µ, ν〉 =
i

2

∫

X

(µ ∧ ν) · µAr =
i

2

∫

X

(µ ∧ ν) · eφArµhyp .

Therefore, by Theorem 3.5, there is a constant C > 0 such that
LMg,Ar(Xt) ≤ C · LMg,hyp(Xt). Since LMg,hyp(Xt) is finite, so is
LMg,Ar(Xt), which proves the theorem. ¤

4.3. Remark. As Theorem 4.2 demonstrates, the identity (3) allows one to
study the Arakelov-induced metric on Mg going beyond results obtainable
through other techniques, such as in [3] and [4]. Going further, one now has
the opportunity to study other properties of the Arakelov-induced metric on
Mg by following the methodology of Theorem 4.2: Utilize the corresponding
result in the classical Weil-Petersson (hyperbolic-induced) setting, together
with properties of the hyperbolic heat kernel. We leave for elsewhere the
problem of systematically studying the Arakelov-induced metric on Mg, as
first posed in [3] and [4], using the identity (3).
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