217 research outputs found
Clinical Phenotypes and Comorbidity in European Sleep Apnoea Patients
Background Clinical presentation phenotypes of obstructive sleep apnoea (OSA) and their association with comorbidity as well as impact on adherence to continuous positive airway pressure (CPAP) treatment have not been established. Methods A prospective follow-up cohort of adult patients with OSA (apnoea-hypopnoea index (AHI) of 655/h) from 17 European countries and Israel (n = 6,555) was divided into four clinical presentation phenotypes based on daytime symptoms labelled as excessive daytime sleepiness ("EDS") and nocturnal sleep problems other than OSA (labelled as "insomnia"): 1) EDS (daytime+/nighttime-), 2) EDS/insomnia (daytime+/nighttime+), 3) non-EDS/noninsomnia (daytime-/nighttime-), 4) and insomnia (daytime-/nighttime+) phenotype. Results The EDS phenotype comprised 20.7%, the non-EDS/non-insomnia type 25.8%, the EDS/ insomnia type 23.7%, and the insomnia phenotype 29.8% of the entire cohort. Thus, clinical presentation phenotypes with insomnia symptoms were dominant with 53.5%, but only 5.6% had physician diagnosed insomnia. Cardiovascular comorbidity was less prevalent in the EDS and most common in the insomnia phenotype (48.9% vs. 56.8%, p<0.001) despite more severe OSA in the EDS group (AHI 35.0\ub125.5/h vs. 27.9\ub122.5/h, p<0.001, respectively). Psychiatric comorbidity was associated with insomnia like OSA phenotypes independent of age, gender and body mass index (HR 1.5 (1.188-1.905), p<0.001). The EDS phenotype tended to associate with higher CPAP usage (22.7 min/d, p = 0.069) when controlled for age, gender, BMI and sleep apnoea severity. Conclusions Phenotypes with insomnia symptoms comprised more than half of OSA patients and were more frequently linked with comorbidity than those with EDS, despite less severe OSA. CPAP usage was slightly higher in phenotypes with EDS
Microstructural and Paleomagnetic Insight into the Cooling History of the IAB Parent Body
The IABs represent one of only two groups of iron meteorites that did not form by fractional crystallization of liquid Fe-Ni in the core of a differentiated planetesimal. Instead, they are believed to originate from a partially differentiated body that was severely disrupted by one or more impacts during its early history. We present a detailed microstructural and paleomagnetic study of the Odessa and Toluca IAB meteorites, with a view to further constraining the complex history of the IAB parent body. X-ray photoemission electron microscopy and energy dispersive spectroscopy were used to generate high-resolution Ni/Fe maps. The crystallographic architecture of Odessa was analysed using electron backscatter diffraction. Paleomagnetic signals and the magnetic properties of several microstructures were also assessed using X-ray magnetic circular dichroism. Odessa exhibits a complex series of microstructures, requiring an unusual evolution during slow cooling. A conventional Widmanstätten microstructure, consisting of multiple generations of kamacite lamellae surrounded by M-shaped diffusion profiles, developed via continuous precipitation to temperatures below ∼400°∼400°C. Multiple generations of pearlitic plessite nucleated from kamacite/taenite (T > 400°400°C) and tetrataenite rim/taenite interfaces (T < 400°400°C), via a process of discontinuous precipitation. Rounded rafts of Ni-rich taenite, observed within some regions of pearlitic plessite, are shown to have the same crystallographic orientation as the parental taenite, and a non-standard orientation relationship with the enclosing kamacite. Contrary to current theories, these rafts cannot have formed by coarsening of pre-existing pearlitic plessite. A new bowing mechanism is proposed, whereby rafts of Ni-enriched taenite form between advancing lobes of an irregular reaction front during discontinuous precipitation. Subsequent coarsening leads to the growth of the taenite rafts, and the partial or complete removal of pearlite lamellae, resulting in spheroidised plessite with a crystallographic architechture matching the experimental observations. We find no evidence for a strong magnetic field on the IAB parent body, suggesting it did not have an active core dynamo at the time of cloudy zone formation. This supports the prediction that the IAB parent body was unable to form a significant core due to the redistribution of metal during an earlier impact event
Mutations in MAP3K7 that Alter the Activity of the TAK1 Signaling Complex Cause Frontometaphyseal Dysplasia.
Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor β (TGF-β)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex
Mild Transient Hypercapnia as a Novel Fear Conditioning Stimulus Allowing Re-Exposure during Sleep
Introduction:Studies suggest that sleep plays a role in traumatic memories and that treatment of sleep disorders may help alleviate symptoms of posttraumatic stress disorder. Fear-conditioning paradigms in rodents are used to investigate causal mechanisms of fear acquisition and the relationship between sleep and posttraumatic behaviors. We developed a novel conditioning stimulus (CS) that evoked fear and was subsequently used to study re-exposure to the CS during sleep.Methods:Experiment 1 assessed physiological responses to a conditioned stimulus (mild transient hypercapnia, mtHC; 3.0% CO2; n = 17)+footshock for the purpose of establishing a novel CS in male FVB/J mice. Responses to the novel CS were compared to tone+footshock (n = 18) and control groups of tone alone (n = 17) and mild transient hypercapnia alone (n = 10). A second proof of principle experiment re-exposed animals during sleep to mild transient hypercapnia or air (control) to study sleep processes related to the CS.Results:Footshock elicited a response of acute tachycardia (30-40 bpm) and increased plasma epinephrine. When tone predicted footshock it elicited mild hypertension (1-2 mmHg) and a three-fold increase in plasma epinephrine. When mtHC predicted footshock it also induced mild hypertension, but additionally elicited a conditioned bradycardia and a smaller increase in plasma epinephrine. The overall mean 24 hour sleep-wake profile was unaffected immediately after fear conditioning.Discussion:Our study demonstrates the efficacy of mtHC as a conditioning stimulus that is perceptible but innocuous (relative to tone) and applicable during sleep. This novel model will allow future studies to explore sleep-dependent mechanisms underlying maladaptive fear responses, as well as elucidate the moderators of the relationship between fear responses and sleep. © 2013 McDowell et al
Neue Untersuchungsergebnisse zum alter von dunkelbäuchigen Ringelgänsen Branta b. bernicla
info:eu-repo/semantics/publishe
Differential diagnosis of perinatal hypophosphatasia: radiologic perspectives
Perinatal hypophosphatasia (HPP) is a rare, potentially life-threatening, inherited, systemic metabolic bone disease that can be difficult to recognize in utero and postnatally. Diagnosis is challenging because of the large number of skeletal dysplasias with overlapping clinical features. This review focuses on the role of fetal and neonatal imaging modalities in the differential diagnosis of perinatal HPP from other skeletal dysplasias (e.g., osteogenesis imperfecta, campomelic dysplasia, achondrogenesis subtypes, hypochondrogenesis, cleidocranial dysplasia). Perinatal HPP is associated with a broad spectrum of imaging findings that are characteristic of but do not occur in all cases of HPP and are not unique to HPP, such as shortening, bowing and angulation of the long bones, and slender, poorly ossified ribs and metaphyseal lucencies. Conversely, absent ossification of whole bones is characteristic of severe lethal HPP and is associated with very few other conditions. Certain features may help distinguish HPP from other skeletal dysplasias, such as sites of angulation of long bones, patterns of hypomineralization, and metaphyseal characteristics. In utero recognition of HPP allows for the assembly and preparation of a multidisciplinary care team before delivery and provides additional time to devise treatment strategies
- …