3,489 research outputs found
Theoretical studies of photoexcitation and ionization in H_2O
Theoretical studies are reported of the complete dipole excitation and ionization spectrum in H_2O employing FranckâCondon and staticâexchange approximations. Large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the groundâstate equilibrium geometry, and previously devised momentâtheory techniques are employed in constructing the continuum oscillatorâstrength densities from the calculated spectra. Detailed comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impactâexcitation cross sections, and dipole (e,â2e)/(e,âe+ion) and synchrotronâradiation studies of partialâchannel photoionization cross sections. The various calculated excitation series in the outerâvalence (1b(^â1)_1, 3a(^â1)_1, 1b(^â1)_2) region are found to include contributions from valenceâlike 2b_2â(Ï*) and 4a_1(Îł*) virtual orbitals, as well as appropriate nsa_1, npa_1, nda_1, npb_1, npb_2, ndb_1, ndb_2, and nda_2 Rydberg states. Transition energies and intensities in the âŒ7 to 19 eV interval obtained from the present studies are seen to be in excellent agreement with the measured photoabsorption cross section, and to provide a basis for detailed spectral assignments. The calculated (1b(^â1)_1)X(^â2)B_1, (3a_1(^â1))^2A_1, and (1b_2(^â1))(^2)B_2 partialâchannel cross sections are found to be largely atomicâlike and dominated by 2pâkd components, although the 2b_2(Ï*) orbital gives rise to resonanceâlike contributions just above threshold in the 3a_1âkb_2 and 1b_2âkb_2 channels. It is suggested that the latter transition couples with the underlying 1b_1âkb_1 channel, accounting for a prominent feature in the recent highâresolution synchrotronâradiation measurements. When this feature is taken into account, the calculations of the three outerâvalence channels are in excellent accord with recent synchrotronâradiation and dipole (e,â2e) photoionization crossâsectional measurements. The calculated innerâvalence (2a_1(^â1)) cross section is also in excellent agreement with corresponding measured values, although proper account must be taken of the appropriate finalâstate configurationâmixing effects that give rise to a modest failure of the Koopmans approximation, and to the observed broad PES band, in this case. Finally, the origins of the various spectral features present in the measured 1a_1 oxygen Kâedge electron energyâloss profile in H_2O are seen to be clarified fully by the present calculations
Planet geometric center tracker, volume 1 Final report, Oct. 1964 - Jul. 1967
Tracker for locating geometric centers of Mars, Venus, or Jupite
On the Nature of Intrinsic Absorption in Reddened Seyfert 1 Galaxies
We discuss the origin of the ``dusty lukewarm absorber'', which we previously
identified in the reddened Seyfert 1 galaxies NGC 3227 and Akn 564. This
absorber is characterized by saturated UV absorption lines (C IV, N V) near the
systemic velocity of the host galaxy, and is likely responsible for reddening
both the continuum and the emission lines (including those from the narrow-line
region) from these Seyferts. From a large sample of Seyfert 1 galaxies, we find
that continuum reddening (as measured by UV color) tends to increase with
inclination of the host galaxy. Furthermore, reddened, inclined Seyfert
galaxies observed at moderate to high spectral resolution all show evidence for
dusty lukewarm absorbers. We suggest that these absorbers lie in the plane of
the host galaxy at distances > 100 pc from the nucleus, and are physically
distinct from the majority of intrinsic absorbers that are outflowing from the
nucleus.Comment: 14 pages, including 2 figures, accepted for publication in the
Astrophysical Journal (Letters
Probing the Complex and Variable X-ray Absorption of Markarian 6 with XMM-Newton
We report on an X-ray observation of the Seyfert 1.5 galaxy Mrk 6 obtained
with the EPIC instruments onboard XMM-Newton. Archival BeppoSAX PDS data from
18-120 keV were also used to constrain the underlying hard power-law continuum.
The results from our spectral analyses generally favor a double
partial-covering model, although other spectral models such as absorption by a
mixture of partially ionized and neutral gas cannot be firmly ruled out. Our
best-fitting model consists of a power law with a photon index of 1.81+/-0.20
and partial covering with large column densities up to 10^{23} cm**-2. We also
detect a narrow emission line consistent with Fe Kalpha fluorescence at
6.45+/-0.04 keV with an equivalent width of ~93+/-25 eV. Joint analyses of
XMM-Newton, ASCA, and BeppoSAX data further provide evidence for both spectral
variability (a factor of ~2 change in absorbing column) and
absorption-corrected flux variations (by ~60%) during the ~4 year period probed
by the observations.Comment: 7 pages, 2 figures. accepted for publication in the Astronomical
Journa
The Host Galaxies of Narrow-Line Seyfert 1s: Evidence for Bar-Driven Fueling
We present a study of the host-galaxy morphologies of narrow- and broad-line
Seyfert 1 galaxies (NLS1s and BLS1s) based on broad-band optical images from
the Hubble Space Telescope archives. We find that large-scale stellar bars,
starting at ~1 kpc from the nucleus, are much more common in NLS1s than BLS1s.
Furthermore, the fraction of NLS1 spirals that have bars increases with
decreasing full-width at half-maximum (FWHM) of the broad component of H-beta.
These results suggest a link between the large-scale bars, which can support
high fueling rates to the inner kpc, and the high mass-accretion rates
associated with the supermassive black holes in NLS1s.Comment: 19 pages, 4 figures (1a, 1b, 2, and 3), Accepted for publication in
the Astronomical Journa
On The Reddening in X-ray Absorbed Seyfert 1 Galaxies
There are several Seyfert galaxies for which there is a discrepancy between
the small column of neutral hydrogen deduced from X-ray observations and the
much greater column derived from the reddening of the optical/UV emission lines
and continuum. The standard paradigm has the dust within the highly ionized gas
which produces O~VII and O~VIII absorption edges (i.e., a ``dusty warm
absorber''). We present an alternative model in which the dust exists in a
component of gas in which hydrogen has been stripped, but which is at too low
an ionization state to possess significant columns of O~VII and O~VIII (i.e, a
``lukewarm absorber''). The lukewarm absorber is at sufficient radial distance
to encompass much of the narrow emission-line region, and thus accounts for the
narrow-line reddening, unlike the dusty warm absorber. We test the model by
using a combination of photoionization models and absorption edge fits to
analyze the combined ROSAT/ASCA dataset for the Seyfert 1.5 galaxy, NGC 3227.
We show that the data are well fit by a combination of the lukewarm absorber
and a more highly ionized component similar to that suggested in earlier
studies. We predict that the lukewarm absorber will produce strong UV
absorption lines of N V, C IV, Si IV and Mg II. Finally, these results
illustrate that singly ionized helium is an important, and often overlooked,
source of opacity in the soft X-ray band (100 - 500 eV).Comment: 17 pages, Latex, includes 1 figure (encapsulated postscript), one
additional table in Latex (landscape format), to appear in the Astrophysical
Journa
Probing the Kinematics of the Narrow-Line Region in Seyfert Galaxies with Slitless Spectroscopy: Observational Results
We present slitless spectra of 10 Seyfert galaxies observed with the Space
Telescope Imaging Spectrograph on the Hubble Space Telescope. The spectra cover
the [OIII] 4959, 5007 emission lines at a spectral resolving power of ~9000 and
a spatial resolution of 0.1". We compare the slitless spectra with previous HST
narrow-band images to determine the velocity shifts and dispersions of the
bright emission-line knots in the narrow-line regions (NLRs) of these Seyferts.
Many knots are spatially resolved with sizes of tenths of arcsecs,
corresponding to tens of pcs, and yet they appear to move coherently with
radial velocities between zero and +/- 1200 km/s with respect to the systemic
velocities of their hostgalaxies. The knots also show a broad range in velocity
dispersion, ranging from ~30 km/s (the velocity resolution) to ~1000 km/s FWHM.
Most of the Seyfert galaxies in this sample show an organized flow pattern,
with radial velocities near zero at the nucleus (defined by the optical
continuum peak) and increasing to maximum blueshifts and redshifts within ~1''
of the nucleus, followed by a decline to the systemic velocity. The
emission-line knots also follow a general trend of decreasing velocity
dispersion with increasing distance. In the Seyfert 2 galaxies, the presence of
blueshifts and redshifts on either side of the nucleus indicates that rotation
alone cannot explain the observed radial velocities, and that radial outflow
plays an important role. Each of the Seyfert galaxies in this sample (with the
exception of Mrk 3) shows a bright, compact (FWHM < 0.5") [O III] knot at the
position of its optical nucleus. These nuclear emission-line knots have
radial-velocity centroids near zero, but they typically have the highest
velocity dispersions.Comment: 28 pages, 5 figures (on 9 pages), accepted for A
CASSIS: The Cornell Atlas of Spitzer/Infrared Spectrograph Sources. II. High-resolution observations
The Infrared Spectrograph (IRS) on board the Spitzer Space Telescope observed about 15,000 objects during the cryogenic mission lifetime. Observations provided low-resolution (R~60-127) spectra over ~5-38um and high-resolution (R~600) spectra over ~10-37um. The Cornell Atlas of Spitzer/IRS Sources (CASSIS) was created to provide publishable quality spectra to the community. Low-resolution spectra have been available in CASSIS since 2011, and we present here the addition of the high-resolution spectra. The high-resolution observations represent approximately one third of all staring observations performed with the IRS instrument. While low-resolution observations are adapted to faint objects and/or broad spectral features (e.g., dust continuum, molecular bands), high-resolution observations allow more accurate measurements of narrow features (e.g., ionic emission lines) as well as a better sampling of the spectral profile of various features. Given the narrow aperture of the two high-resolution modules, cosmic ray hits and spurious features usually plague the spectra. Our pipeline is designed to minimize these effects through various improvements. A super sampled point-spread function was created in order to enable the optimal extraction in addition to the full aperture extraction. The pipeline selects the best extraction method based on the spatial extent of the object. For unresolved sources, the optimal extraction provides a significant improvement in signal-to-noise ratio over a full aperture extraction. We have developed several techniques for optimal extraction, including a differential method that eliminates low-level rogue pixels (even when no dedicated background observation was performed). The updated CASSIS repository now includes all the spectra ever taken by the IRS, with the exception of mapping observations
- âŠ