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FOREWORD

This final report was prepared by Lockheed Missiles
and Space Company, for the National Aeronautics and
Space Administration, Ames Research Center, under
Contract NAS 2-2485. This research is basically
advanced sensor development and was conducted over

the period from October 1964 to July 1967.

,(/'-'V"

LOCKHEED MISSILES & SPACE COMPANY

LMSC 678162



LMSC 678162

ABSTRACT

PLANET GEOMETRIC CENTER TRACKER

The tracker locates the geometric center of Mars, Venus, or Jupiter
with angular accuracy on the order of 1 arc second, regardless of
whether the planet appears gibbous or crescent-shaped. The tracker
functions over the full range of illuminations and radii for these
three planets. The basic scheme involves the use of a roulette
type circular scan, constrained to be circular, around the planet's
edge and evaluation of the harmonic content of the signal generated

by the tracker detector, an image dissector.

The expected performance of the tracker was analyzed using an analog
simulator and digital computer. The predicted performance exceeded
all requirements. The actual performance was determined with the
breadboard tracker using an LMSC 40-foot collimator with focal plane
translation of planet masks to simulate actual planet geometry. The
tracker performed almost as well as predicted and the results firmly
establish the practical basis for this technique to be used in

operational hardware.
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TECHNICAL DESCRIPTION OF THE
PLANET GEOMETRIC CENTER TRACKER

Lockheed Missiles and Space Company has recently completed a breadboard
development fixed price contract for NASA/Ames Research Center for a
Planet Geometric Center Tracker.

The tracker locates the geometric center of Mars, Venus, or Jupiter with
angular accuracy on the order of 1 arc second, regardless of whether the
Planet appears gibbous or crescent-shaped. The tracker functions over the
full range of illuminations and radii for these three Planets. The basic
scheme involves the use of a roulette type circular scan, constrained to be
circular, around the planet's edge and evaluation of the harmonic content of
the signal generated by the tracker detector, an image dissector.

The expected performance of the tracker was analyzed using an analog simulator
and digital computer. The predicted performance exceeded all requirements.
The actual performance was determined with the breadboard tracker using an
IMSC 40-foot collimator with focal Plane translation of planet masks to
simulate actual planet geometry. The tracker performed almost as well es
predicted and the results firmly establish the practical basis for this
technique to be used in operational hardware.

The operating characteristics of the breadboard tracker are as follows:

Field of View 4.5 x 4.5 minutes Tracking Rate 15 arc sec./sec.
Error Signal Slope 180 mv/arc sec. Offset Error 0.2 to 1.5 arc seconds
Noise Equivalent Angle 0.17 arc sec. depending on illumina-

tion and planet shape
Linear Slope Limits + 2.25 arc min.

The research breadboard was carried to a state of completion where it is
pPossible to construct an engineering model planet tracker without difficulty.
For example, optical, mechanical, and electronic designs are now available to
generate the design of an engineering model. The engineering model of a flight
configuration tracker could have all of the above performance characteristics;
its estimated weight, power consumption, and size are 20 pounds, 5 watts, and
8.5 inches diameter x 13.5 inches long, respectively.

The original objective of the planet tracker was for long range pointing.
Additional possible applications sre pointing laser beams for communication
purposes, approach guidance, and ]unar and earth horizon sensing. The
basic tracker design is flexible enough to allow reconfiguration to meet
these applications easily.

A GROUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION
SUNNYVALE, CALIFORNIA
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ampere

centimeter

cycles per second
degrees Centigrade
degrees Kelvin
feet

inch

microampere
microvolt

.001 inch
milliampere
millisecond
millivolt
nanoampere

second (angle)
second (time)

volt

noise equivalent bandwidth

signal to noise ratio
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decentration unit (0.1 planet radius)

noise equivalent angle

field of view
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Section 1
INTRODUCTION

This introductory section describes in general terms the project require=-
ments, the achieved results, both analytical and experimental, and the final
report structure. Necessary definitions and nomenclature are provided to
aid the reader in understanding the report contents.

The purpose of the Precision Planet Tracker developed at Lockheed Missiles
and Space Company, under Contract NAS 2-2485 to the National Aeronautics and
Space Administration, Ames Research Center, is to locate the geometric cen-
ter of certain planets (Mars, Venus, Jupiter) with high angular accuracy, on
the order of seconds of arc, under varying illumination conditions. For ex-
ample, in a typical operation, the planet tracker would provide attitude
error signals to point precisely an earth orbiting experimental package in
the direction of a given planet. Accuracies of better than 1.6 arc seconds
have been achieved for planets subtending angles from 10 to 60 arec seconds
under illumination conditions varying from 1/2 to full illumination.

The tracking of the geometric center rather than the illumination center of
a planet is particularly significant for these reasons:

l. For long experiment exposure times relative to a particular point
on a planet, the illumination center may move several arc seconds
relative to the geometric center, causing the image to smear.

2. A particular point on a given planet can always be reacquired at
a later time regardless of the planet illumination.

3. Precise spatial mapping can be performed by biasing the planet
tracker away from the geometric center.

L. For experiments having loose roll control, motion about the
geometric center would be more tolerable than motion about the
illumination center.

5. The geametric center of a planet is a more precisely known
astronomical reference than the illumination center.

The planet tracker program was based on IMSC Proposal 893537 (Ref. 1.1), and
the resulting subcontracts, NAS 2-2485 and NAS 2-2L485 F/0 (Ref.l1.2 and 1.3),
and had these general objectives:

. Compilation of planet illumination and radiation data.

Trade-off analyses of various tracking schemes, including infrared
and visible radiometric and edge tracking concepts.

1-1
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. Generation of detailed tracker design.
Fabrication of breadboard tracker.

. Experimental verification of tracker performance.

. Design, fabricate, and test planet simulator.

. Perform optimization analysis to determine theoretically maximum
tracker performance.

. Write final report.

. Participate in visits to various NASA centers, describing the pro-
gram results.

The program proceeded generally along the paths suggested by the preceding
work items. We were committed to consider visible edge tracking according
to the general concepts specified in the proposal, unless it were clearly
shown, by virtue of some of the preliminary analyses, that other techniques
would be superior. Infrared edge tracking techniques and visible and infra-
red radicmetric balance techniques were evaluated in the early phases of the
program. The basic concept, reduced to breadboard hardware, was essentially
as originally intended and proposed, i.e., visible edge tracking based on a
determination and selection of certain harmonics which were maximized or
minimized at tracking null.

The program proceeded normally for a research breadboard hardware progranm.
For example, the camputer evaluation of the harmonic content of various error
signals provided results which initially did not correlate in detail with the
results cbtained on the analog simulator and by mathematical analysis. The
computer analysis was iterated three times before camplete agreement was ob-
tained. This report describes the accomplished activities as though they
were accamplished in a logical routine chronological fashion, although it is
clear that the actual sequence of events included many redesigns, re-evalua-
tions, and modifications in both the analysis and hardware areas.

As an aid to understanding the material presented in the following sections,
certain definitions and namenclature should be understood.

. Crescent Planet: The apparent shape of the planet when the sun is
illuminating the planet fram behind; for this condition, the planet
can appear as a thin crescent-shaped sliver. The planet appears to
be camposed of a semicircular segment and an elliptical segment in
concave form.

. Gibbous Planet: This condition of illumination is essentially com-
plementary to the condition of crescent illumination. Here the
planet, as seen by the observer, is nearly completely illuminated
with the exception of one edge where the projection of the termi-
nator as seen by the observer is elliptical. The planet appears
to be camposed of a semicircular segment and an elliptical segment
in convex form.

1-2

LOCKHEED MISSILES & SPACE COMPANY




L T T ST S S S S T S W T .

IMSC-678162

. Roulette Scanning Pattern: The scan pattern used in the final
version of the planet tracker is a roulette pattern which appears

as a series of connected small circular spirals formed around the
circular part of the planet edge.

. Decentration Unit: The angular separation between the geometric
center of the scan pattern is specified in terms of decentration
units. One decentration unit is that angular distance where the
scan pattern center is separated from the planet's geometric cen-
ter by one tenth of the planet radius. The magnitude of a decen-
tration unit in arc seconds depends on the planet being tracked.

This report is organized as follows:

The section immediately following this one is Section 2, the Summary, which
is designed to present to the reader all essential points concerning the
program and its results.

Section 3 contains a summary of Planet Characteristics which have been com-
piled through interactions with various astronomers and through evaluation
of the literature. Planet illumination characteristies, size and shape,
color temperature, and black body temperatures are discussed with emphasis
on the planet tracking applicat ions.

Section 4 contains the results of a short study on various Planet Tracking
Techniques. Included in this section are the general trade-offs between
energy balance and edge tracking approaches in both the visible and infrared
parts of the spectrum. Several edge tracking approaches are considered and
one visible edge tracking approach is selected as being the most promising.
It is this approach and its evolutions which are explored more thoroughly
in the subsequent sections of the report.

Section 5 is titled General Tracker Design Considerations, and treats sev-
eral particular cases of visible edge tracking schemes which take the reader
through the various design iterations leading to the final configuration.

Tt is based on material contained in the preceding section, Section 4, and
treats the visible edge tracking approach in greater detail and explores
several possible ways of achieving the technical objectives. It contains
information on the various computer, analog simulator, and mathematical
analyses which were used to refine and modify the block diagram.

Section 6 describes the Detail Instrument Design. By this stage of the pro-
gram and report, we have concluded that a specific design approach is a
satisfactory solution to the technical objectives. This section describes
the final electronic, mechanical, and optical approaches in technical detail.
Several changes to the final design are discussed in this section, which re-
sult from evaluation of breadboard tests on various electronic sub-assemblies.
However, these changes are not of major significance and the concept remained
unchanged.

1-3
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Performance Tests are described in Section 7, which also includes descrip-
tions of test planning, test procedures, and test instrumentation. The
actual test results are compared to the tracker's predicted performance.
In particular, signal to noise ratios are determined from Mars, Venus, and
Jupiter along with tracker linearity and noise equivalent angle.

Section 8 discusses the conclusions, provides several overall comments, and
makes specific recamendations concerning possible follow-on programs and
describes potential uses.

Volume IT contains the results of the edge tracking optimization study
which resulted from a follow-on contract, Reference 1.3.

1-4
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SECTION 2
SUMMARY

This section provides a general chronology of the program and summarizes
the technical aspects.

The RFP requirements were that a research breadboard tracker be developed
which would locate the geometric center of Mars, Venus, or Jupiter with
high angular accuracy, on the order of 1 second of arc, regardless of
planet illumination. The requirement is that the geometric center be
located whether the planet appears in circular or gibbous form. As
originally intended, the tracker would have its eventual application in
pointing an astronomical observatory to any geometric location on the
planet with high pointing accuracy. The RFP also required that a trade-off
analysis be accomplished between various visible and infrared radiometric
energy balance techniques before detailed tracker design and breadboard
tests were begun.

The original concept proposed by LMSC has remained essentially unchanged,
although its implementation was considerably more complex than originally
envisioned. The basic scheme proposed used an image dissector (an imaging
detector where a small aperture, behind which are electron multipliers, is
electronically scanned across the image) scanning along the circular edge
of the planet in a roulette pattern. The scanning pattern is generated by
imposing on the x and y deflection plates of the image dissector, sinusoidal
voltages 90° out of phase, the resulting pattern is circular with smaller
scanning circles superimposed on the edge of the larger circle. The reader
is referred to the photographs of Figures 6.1, 6.2, 6.3, and 6.4. The
larger scanning circle is generated by sinusoidal waveforms of frequency

Wp, and the smaller circles are generated by sine waves at frequency nW.
There are (n-1) loops in a complete scan. The resulting video signal out
of the image dissector has principal frequency components at Wy and (n-1)w0.

The proposed tracking scheme accomplishes the search function by expanding
and contracting the size of the larger scan circle until a planet crossing
signal is obtained and then phase detecting the signal with respect to the
x and y Wo drive voltages. The center of the scan pattern is then moved

in the direction of the planet. We proposed to fine track the planet by
examination of the second harmonics of the (n-1)Wg component. The output
waveform is a symmetrical square wave at a frequency of (n-1)Wy for
coincidence of the center of a circular planet image and the center of the
scan circle. For small decentrations, the square wave is pulse width modu-
lated and the resulting output contains finite second harmonic voltages.
Thus, by nulling the second harmonic, the scan would be accurately centered
on the planet's center. ’

2-1
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For gibbous planets, when the scan center and planet center were coincident,
the second harmonic signal would also be zero because there would be no pulse
width modulation with the exception of those few pulses where the circular
horizon and the gibbous terminator met. It was felt that the second harmonic
contribution from these pulses would not be significant. These preceding
paragraphs, then, summarize the originally proposed design.

To satisfy contractual requirements, analyses were performed to determine the
validity of the proposed approach compared to infrared and visible energy
balance schemes. The results of the investigations indicated that the logic
associated with locating the planet center from its illumination centroid
would be extremely complex. Evaluation of the infrared approach indicated
that insufficient energy would be available within the aperture size con-
strained by tracker size and volume. It was therefore concluded that visible
edge tracking was the best approach.

The design concept for visible edge tracking was examined in detail through
three complementary approaches. The first involved the derivation and hand-
calculation of the harmonic content of the video signal. The second involved
analyses performed on the digital computer. The third involved the use of an
analog simulator. This last technique proved to be extremely valuable in the
actual design and testing of the planet tracker electronics., Each of these
techniques is briefly discussed in the following paragraphs.

The hand calculation approach involved classical Fourier waveform analyses
with a desk calculator being used to compute the magnitude of the various
harmonics for given decentrations. This technique provided immediate
results, but was, of course, tedious and calculations were soon performed
using large digital computers based on established Fourier analysis programs.
Large quantities of data were generated, but this part of the activity was
dogged by minor programming errors, some of which only gave erroneous results
for certain extreme cases,

The third approach utilized an analog simulator which consists of an oscillo-
scope, scope camera housing, and photomultiplier. Masks simulating planet
shapes are placed on the face of the cathode ray tube and the oscilloscope
beam is deflected by the same x-y voltages that are applied to the Reconotron.
The oscilloscope beam then crosses the edge of the mask in the same way that
the Reconotron beam crosses the edge of a planet image. The photomultiplier
reads the light output and provides a video signal. This signal is exactly
the same signal as the signal at the Reconotron output. Therefore, the
analog simulator accurately simulates the planet tracker optics and Recono-
tron.

Data relating harmonic content to decentration for various planet sizes and
shapes are generated by each of the three methods and the results compared.
Small, but significant, differences were found between the digital computer
results and the analog simulator data, Careful examination of the data
showed that there were errors in the computer program. The results of the

22
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final data showed clearly that the proposed tracking scheme would not work
and that it was possible and even likely that false nulls would be obtained
for the 2(n—1)WO component which would indicate that the scan pattern center
and the planet center were coincident when, in fact, they were not. The
cause arises from some of the subtle interactions between the beam and the
planet edge, and is particularly significant for gibbous planets. Using

the computer results,where the harmonic content of the first 40 harmonics
were plotted as a function of x and y decentration for various gibbosities,
it was determined that additional logic would be needed to locate the planet
center unambiguously.

This logic took the form of additional modulation of the scan pattern
(slither, both fine and coarse) and examination of the nulls and peaks of
several harmonics.

The details are too involved to be discussed here, but briefly it was
determined that for all cases of planet size and shapes considered, the
(n-1)th harmonic had a peak while the 2(n-1)-1'P harmonic had a minimum for
coincidence of scan center and planet center. The problem is in determining
whether the peak is a true maximum or a secondary peak. Verification that
the peak is a maximum is done by electronically displacing the scan center
through the application of coarse and fine slither voltages and then
examining the way the amplitude of the (n-1)th harmonic changes. The reader
is referred to Section 5 for a more detailed explanation. The addition
of these modulation voltages made possible the successful performance of

the tracker. '

The versatility of the analog simulator enabled the entire planet tracker
electronic design to be accomplished and tested without the Reconotron. This
was particularly important because the Reconotron was late in delivery. Out-
put voltages from the analog simulator photomultiplier were fed directly

into the planet tracker preamp and other circuits were required to function
as they would in the planet tracker itself; thus, when the Reconotron was
received, practically all the electronics, with the exception of those few
circuits that were unique to the Reconotron, had already been checked out.

Some difficulty was encountered in obtaining a Reconotron which met our
specifications. Reconotrons available in 1965 had, according to the data
sheet, excellent linearity. However, linearity was defined in terms of
radial line segments through the center of the face plate. In fact, the
tubes generally suffered from pincushion distortion, and the definition of
linearity does not provide an assessment of this type of distortion. With
the cooperation of CBS Laboratories, we eventually obtained a tube with
linearity which was satisfactory and was considerably better than the worst
case linearity they quoted.

2-3
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When the Reconotron arrived, it was assembled within the electronics and
the system debugging began. Electronic compatibility was obtained through
electronic bench checks, after which the assembled electronics with the
Reconotron was coupled to the optical system. The optical system is fairly
straightforward and consists of a Zoomar objective 5" in diameter and 40."
focal length. The Zoomar's image is magnified by a small Luminar relay lens
which provides a magnification of 10 times. The Luminar image falls
directly on the face plate of the Reconotron. Both the Luminar and the
Reconotron are mounted on x-y slides so that optical adjustments and align-
ments and data acquisition is facilitated. The assembled planet tracker
was stimulated using a 40-foot collimator with planet masks at its focal
point. The source mount included a tungsten ribbon filament lamp, the
masks in the mask holder, and a slide to allow translating the mask to
provide planet motion. The performance of the completed planet tracker

was evaluated using this setup.

The actual performance of the tracker was such that, with a 10-cycle output ‘
bandwidth, the logic circuits function properly with a S/N of 10. Under

this condition, an output linearity of + 1.6 arc seconds can be expected.

In the present breadboard configuration, Venus will far exceed the required

signal to noise ratio and Mars provides a marginal signal to noise ratio.

Jupiter cannot be tracked because the calculated signal to noise ratio using

all the existing components (Degradation in the resolution of the Reconotron

and the transmission losses in the optical system degrade the signal to

noise ratio) is only two to one. Several alternatives are available which

will allow the tracker to perform its function. For example, obtaining

a Reconotron with the advertised resolution and reducing the system band- ‘
width sufficiently that the required signal to noise ratio can be obtained. 1

Based on inputs provided by LMSC's AAP team, it is felt that one-cycle
output bandwidths are not unreasonable. The breadboard tracker will meet
all requirements with a one-cycle output bandwidth. Performance improve-
ments which allow utilization of the bandwidth on the order of three cycles
per second are possible with better Reconotron resolution. It was felt that
these improvements are completely within the current state of the art.

We conclude that there is no doubt that locating the geometric center of
Mars, Venus, and Jupiter under all conditions of illumination is entirely
feasible. The completed program provides the basis for accomplishing a
detailed design which will meet the requirements for precision pointing.
The program also provides the basis for activity extension in the areas of
tracker refinements. One of the advantages of this tracking scheme is its
flexibility. It is possible, with slight modification, to measure planet
radius, gibbosity, and location of the terminator. Current applications
emphasize optical approach guidance and possibly earth or lunar horizon
sensing. This tracking scheme probably allows for relatively easy
adaptability to these applications.

R=4
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Section 3

PLANET RADIATION CHARACTERISTICS

3.1 INTRODUCTION AND SUMMARY

This section contains & compilation of data on planetary radiation character-
istics obtained from the literature and from recent conversations with
Planetary astronomers. This information 1s essential to the successful
design of a precision planet tracker whether it operates in the infrared or
visible regions of the spectrum, whether it imploys edge tracking or
radiometric balance.

Of the three planets considered in detail, Venus is brightest with a visual
magnitude of about -4, Jupiter is next brightest with a visual magnitude of
about -2, and Mars is dimmest with a visual magnitude ranging from +.5 to

about -2 for the range of orbital locations considered. For edge tracking
sensors, it is important to consider the illumination (lumens per square
centimeter) from an elemental planetary area (for example, 1 square arc
second). For this situation, Venus provides the highest illumination level,
with Mars being less bright, agilJupiter piéng least brigh‘gl2 The approximate
illumination levels are 6 x 10 , 5 x10 , and 1.2 x 10 lumens per square

-centimeter for a square arc second area respectively.

Planetary infrared radiation characteristics are less well determined. -
Planets may have temperature gradients which may cause difficulties for
infrared trackers employing radiation balance techniques. Calculations are
provided which show essential agreement between published color temperature
radiation for Mars, Venus, and Jupiter, and our calculations for effective
temperature. This sgreement allows the use of existing LMSC computer programs
based on effective temperature.

3-1
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3.3 RELEVANT CHARACTERISTICS OF MARS, VENUS, AND JUPITER

‘ny up aouwqysSTp JousTd-yjJa8d

*X3PUT JOTOD

‘ny Ul a0uBlSTP jausTd-uns

‘qoueTd WOXJ U93S YIJIBD PUR UNS UIIMIaq aT3us = I[3ue aseyd

‘3T UO JUIPTOUT IYITT
Te303 03 aJouds ® WOJJ PI}OSTISL JYITT Te303 JO OT98d = Opaqre puod =P

00°2 = ®(vax8 pagBUTUMIIT ® ‘°3°T)(>08024T)2/T = (%)@
o0y =0 UOT3O3TISI OTTTEIN
71T =90 meT I9877299-ToumoT
05'T =0 (uoTsnIITP 3093x3d) MBT 3JI3quUE]

189880 BUTMOTTOJY
o)

ay3 oasy oM °meT 9seyd ayj3 squasaxdax 38Ul J0308F 8 ST YP YWUTS A.ov& \w
. u

ropaqre
ay3 poT[e° sewrjemos st d ‘TTows ST oFusx j Y3 asmedaq umouyun st & usym
(ny ut geueTd
Jo sniped/ va) 30T 2 + Apmcm.ﬁms - uns uw) 40 = (w) ¢ SoT +(d) Bor

usay], -qousTd ayy se 9z]s juagedds pue uorjFsod swes YITA YSTP
SutsnyITp AT309319d JO SSaujzyldidq 03 O = o 38 ssaujydtaq 3ausTd JOo OF3BI

¢TO'0 + 80T G & T°6- . . - . . TH
9000000°0 =  #2000° 0% 9°0 + 6'12 0 05°C 85 "t v
000°0 + B0T ¢ + €4~ 6L°0 + 00§° q 22 - ¢g* 0°'T ¢g8”
0SHTO 0 + BoT G + TH'T- TH'T & G6L® 0 86°T- ¢t Lo°t 7T°
r-g 2% v v 6 4
= ageuyd
Y3ITH JO UOT3BTJIBA
spnjTudey
2°€ TIavl

Jaq1dnp
Snuap
SIBW
LANVId

LOCKHEED MISSILES & SPACE COMPANY




LMsC-678162

3.4  VARIATION OF THE ILLUMINATION RECEIVED FROM VENUS, MARS, AND JUPITER

The aspparent visual magnitude of each of the planets depends upon the angular
position and distance of the planet relative to the sun and earth. The
magnitude variations and extremes were determined for Venus, Mars, and Jupiter
from equations given by C. V. Allen in "Astrophysical Quantities, Second
Edition" (Ref. 3.1, pege 145). To simpliiy the calculations, both the
orbital eccentricity and inclination to the ecliptic were assumed to be zero
for each of the planets. The magnitude of Venus was found to vary between
-3.34 m_ at the dimmest to -4.37 m_ at its brightest. Mars has a magnitude
variation from #1.61 m_ to -1.90 m_ and Jupiter varies from -1.52 m_  to

-2.42 m . Figure 3-1 ghows the plgnet magnitudes plotted as a func¥ion of
the angIe between planet and earth as seen from the sun. The program require-
ments are that Mars, Venus, and Jupiter must be considered whenever their
angular diameter is greater than 10 seconds of arc and whenever they are at
least 50% illuminated. These ranges of angular diameter and illumination are
shown in Figure 3-1.

Since the instantaneous field of view of an edge tracker is small, considera-
tion must also be given to changes of the phase of illumination (i.e., crescent,
gibbous, or full) and to the apparent angular diameter of the target planet.
Tne apperent angular size of each planet was calculated for various orbital
positions relative to the earth, and the values gf visual magnitude correspond-
ing to each position were converted to lumens/cm received outside the earth's
atmosphere. The phase angle of the planet and the apparent angular size were
used to calculate the area of the illuminated portion of the planet in square
are seconds. Figure 3.2 shows the variation in illumination received from a
one square arc second area from each of the planets. Illumination per unit
area of source is plotted against planet radius to illustrate both changes in
energy level and angular size of the planets. As in Figure 3.1, the range of
values of angular diameter and illumination are shown in Figure 3.2.

In addition to phase, size, and magnitude, consideration must be given to the
spectral characteristics of the detector and the planets. In the visual
regign, the color temperature of Venus is L4TO K, Jupiter 6520 K, and Mars
37807K. Calculations in Section 4, Planet Tracking Techniques, are made to
determine the absolute response of various photo detectors (S-5, S-11, 5-20)
to the planets based on actual magnitudes and color temperatures.

3.5 SPECTRAL CONSIDERATIONS

The illumination received from the planets is reflected energy from the sun
modified by the reflection and absorption characteristics of each planet.

The variations of illumination received from the planets Mars, Venus, and
Jupiter as a result of changes in visual magnitude and apparent angular size
were considered in the previous section, Section 3.4. The values given in
Figure 3.2 refer to the energy in the astronomical visual region and define
the energy relative to that from a reference star which is said to have an
apparent visual magnitude of zero (m_ = 0). To thglsuman eye tgg reference
Type AO star provides an illumination of 2.65 x 10 lumens-cm _ ovublside the
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earth's atmosphere (Ref. 3.1).

To determine the response to planet energy by detectors having spectral
sensitivity outside the spectral region of measurement, it is necessary to
determine both the spectral characteristics of the planets and their absolute
energies. This can be achieved by measuring the absolute amounts of energy
from the source in two separate intervals. The spectral intervals generally
used for this purpose (Ref. 3.1) are illustrated in Figure 3.3. These two
intervals are generally referred to as the B and V curves.

The B-V corrections listed in Ref. 3.1 for each planet relate to the relative
response to the source of the V. and B curves shown in Figure 3.3. The
color temperature of the planegs based on B-V valges were computed as:
Jupiter - 6520 K; Venus - 5570 K; and Mars - 3780 K.

The spectral characteristics of the reference A0 star must also be known.
Based _on the B-V correction, an AO star would have a color temperature of
15400°K. Since, however, the color temperature actually refers to the
apparent shape of the envelope of the energy rather then to the smoothed
flux ghich would be seen by a detector, the temperature is assumed to be
11000 K. This assumption is in good sagreement with references 3.2 and 3.3,
Keenan and Lamore, and yields radiance levels about 2 percent lower than that
obtained using the color temperature.

The abso%ute energy distributions from zero magnitude llOOOoK, 6520°K, 5570°K,
and 3780 K black body sources are shown in Figure 3.3. The curve for AO wes
determined by equating the value of luminous flux from an m, = 0 star to the
integral with respect to wavelength of the product of the absolute response
curve of the eye (K 680 lumens/watt) and the eneggy curve for an 11000 K black
body with an unknown absolute value (Cl H2 11000°K) and solving for the
constant Cl.

=10 -2
c. o 2:65 x 10" lumens - cm = 5.01 x 10717

I.e., —
1 080 lumens-watt 1 o K H

11000K

The absolute energy curves for zero magnitude sources at the color tempera-
ture of each planet were found in a similar manner by using the relative
astronomical visual curve (v2) and equating the integrals

o [ 4
cl ﬁ* H, 11000k 02{V> H).ssz.o ‘b‘
L)
o
3[\/,‘ H)ssbél
= Cl{- °
\/)~ H)‘-;"ao A?«
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and solving for C2, C3, and Cu.
. -1 - -
02 = 2.89x10 6; C3 = 5.60x10 16; Cy = 5.20 x 10 5

It should be noted that when derived in this manner, if H,_ is watts --crn-2
micron = radiated from a sourcg, the values ¢ H (as shswn in Figure 1)
are illumination in watts -cm = - micron = received outside the earth's
atmosphere.

The m_= v values can be converted to the minimum level of illumination per
arc sécond using values taken from gae curves in Figure 3.2 by multiplying_
by the ratigeof minimum lumens - cm = - arc sec - to the Reference 2.65x10
lumens - cm .

10

The resulting retios are:

Jupiter L.56 x 10:3 arc sec_,
Venus 1.59 x 10_.2 arc sec__2
Marx 1.56 x 10 © arc sec

These values are applied in Section 4 where the absolute spectral responses
of various photodetectors are integrated together with the spectral
characteristics of planets based on the information in this section.

3.6 GIBBOUS PHASES OF MARS, VENUS, AND JUPITER

A planet enters the gibbous illumination phase when the angle between the
observer and the sun as measured from the planet begins to depart from O
degrees. As the angle increases to 90 degrees, the planet, as seen by the
observer, is illuminated on only one half of its apparent disk. wWe are
concerned, for the purposes of this study, with the "gibbousity" of Mars,
Venus, and Jupiter because the existence of a non-circular planet or a
planet whose illumination characteristics depart only slightly from circular-
ity may cause an edge seeking sensor to seek false nulls away from the
geometric center of the planet. These points will be explored in detail in
Section 5, General Tracker Design Considerations, where the harmonic content
of the error signal for an edge tracker under various conditions of
gibbousity are examined.

Figurc 3.4 shows the gibbousity of Mars, Venus, and Jupiter as a function of
planet radius. We are required to consider Mars only when its angular
diameter is greater than 10 arc seconds. This situation is shown in the
figure. The ratio A/B is the ratio of the angular radius of the gibbous half
of the planet to the actual planet radius. Venus has the largest departure
from circularity and Jupiter the least.

Of the three planets considered, only Venus becomes crescent (1less than 50%
illuminated), since Mars and Jupiter are both exterior planets (i.e., have
orbital radii greater than that of the earth).

3-9
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3.7 ADDITIONAL DATA OBTAINED FROM VARIOUS OBSERVATORIES

In December 196k, discussions were held with both Dr. C. P. Kuiper and
Dr. J. F. Low of the University of Arizona concerning planet spectral

and spatial characteristics. Dr. Kuiper was asked for data concerning
spectral and spatial data in the visible and Dr. Low for infrared data.

In the visible region of the spectrum, Dr. Kuiper referred to the data in

Vol. III of Planets and Satellites (Ref. 3.4) as the only "good data avail-
able." For our purposes the date is somevwhat limited, however, general trends
are discussed which will essist in determining the proper spectral interval
for a visible system. In general, the data consists of a series of photo-
graphs of Mars, Jupiter, and Venus. Some of the photos are in color and some
are in black and white. The latter were taken with red, blue, and yellow
photographs. Details in the photos were, in general, poor. Reprints were
obtained from the Mount Wilson Observatory. '

Investigation of the Mars photographs from both sources shows that many
large cloud-like structures are visible in the red and orange portions of the
spectrum, vhile in the blue region the contrast from the clouds becomes
definitely decreased and in one case almost eliminated, thus providing an
almost uniformly illuminated target. This effect arises from Rayleigh
scattering from the Martian atmosphere. Additional data concerning the
variation of the brightness of Mars with rotational phase further indicates
uniformity in the blue region of the spectrum. As a result of reviewing this
data, it is concluded that operation in the blue region of the spectrum is
desirable to assure uniformity of the edge in the case of Mars.

Planet temperature information was obtained from Dr. F. G. Low. In

general, Dr. Low also referenced the work by Pettit in Kuiper's book (Ref.3.k)
as the best source of planet temperature data with the exception of Saturn.
The temperature of Saturn has recently been measured by Dr. Low with a Ge
Bolometer in the 8 - 14 micron region. He obtained a temperature of 93°K
which is about 30° lower than that reported in the literature.

A sumary of the Pettit data is provided below:

Max. °K Min. °k
Venus 2E08 2352
Mars (Polar Cap) 221 211
Jupiter 149 ? 5
Saturn 125° 93 (F. Low Data)

As a general note, it should be pointed out that for Mars the temperature
variation across the surface from the south polar cap to the limb varies
with 221°K and 27h°K wvhich could give sericus troubles in locating the
geometric center of the planet with an infrared radiometric balance
tracker.

3-11
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3.8 COMPUTER BASED RADIOMETRIC CALCULATIONS

From the early stages of the program, we planned to use existing computer
programs to perform the radiometric calculations used to predict the per-
formance of various sensors. As information on the detailed illumination and
radiation characteristics of the planets was obtained, the question arose
concerning the applicability of existing computer programs based on integra-
tion of black body functions to the calculation of tracker performance. The
question is basically, how well do planetary radiation characteristics in
terms of color temperature fit into existing computer programs which are
written in terms of effective temperature? The analysis, which is summarized
for the case of Mars in the following paragraphs, showed that the assumption
that the color temperature and effective temperatures are equal, is satis-
factory for Mars, Venus, and Jupiter for the purposes of this program.

The following peragraphs show the calculation for Mars in detail:

m = -1.98
B-V = 1l.41
Te = 3780°K
1 2
_/3) fy dx = 2.0k x 10™ watts/cm” ster.
where . s s o]
fA is radiation from a 3780 K blackbody and
VA is

from Ref. 3.1, page 191.
m, = -2.51910g( fVx £a dX) - 14.08
let X = _[V,. FdX

-1.98 = -2.5 log (X) -14.08

X = 1l.45 x 107t wa.tts/cm2
Ratio of calculation by computer to that from m calculation.
=12
R = l;&é_i_lgi_ = 2.92 x 10 1k
2.0k x 10
If we assume Tc = Tc
28000
BC = =42.5 4 10 log (3780) + 3%
BC = +1.05
ool & ™ T RC
Mol = -1.98 - 1.05 = -3;95
2.52 x 10
Mol = 2.51 log S
3-12
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H = 4.08 x 107+ watts/cms

Total power received from 3780°K blackbody
= 1.2 x lO3 watts/cm2
= 1.2 x 103 .R = 1.2 x 103 .2.20 x 10"} =

ool
I

2.67 x 1074 watts/cmg

Hl =

Hl = H
The approximate equality, when considered with program objectives and the
uncertainty in the source data, shows that the assumption of the equality of
the effective temperature and the color temperature is satisfactory and that
new computer programs based on color temperature need not be written.

Similar calculations were performed for Jupiter and Venus which yielded
equivalent agreement for each planet. Color temperature information from
Reference 3.1 is summarized below:

B-V = 7300°/T¢ -0.52
where Tc is color temperature - visible continuum

Mars B-V = +l.hlo
1.41 = 7300 /Te =0.52
Te = 3780°K
Jupiter B-V = +O.6O
' 0.6 = 7300 /Tec =0.52
Te = 6520 K
Venus B-v= 0.79 o
0.79 = 7300 K/Tco -0.52
Te = 5570 K

3.9 COMMENTS

The material compiled in this section provides the basis for the following
comments.

1. An edge tracking sensor operating in the visible will have the most
difficulty tracking Jupiter because of its small radiation level per unit
area,.

2. Infrared radiometric balance trackers may have considerable difficulty
overcoming temperature gradients existing on a planet such as Mars, for
-example, in addition to considerable uncertainty, even now, concerning
the existence and magnitude of these gradients. In the sbsence of better
source information, it appears that no definitive specification for an
infrared radiometric balance planet tracker can be written.

3-13
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Section 4

PLANET TRACKING TECHNIQUES

L.1  INTRODUCTION AND SUMMARY

One of the contractual requirements involved investigation of tracking schemes
other than visible edge tracking. The additional techniques considered were
infrared edge tracking and infrared and visible radiometric or photometric
balance techniques. This section describes the analyses conducted and
concludes that infrared techniques are not as practical as visible techniques.
Specificelly; infrared radiometric balance approaches are limited by available
signal to noise ratio. Infrared edge tracking schemes do not appear practical
either, also because of the low energies available. We could not configure
conceptually a visible photometric balance approach which could accurately and
consistently locate the geometric center with anywhere near the angular
accuracy required. The technique which provides most promise is the visible
edge tracking approach which is gble to locate the geometric center consis-~
tently, even with partial illumination of the planet.

4.2 INFRARED PLANET TRACKERS FOR HIGH ANGULAR ACCURACY
Introduction and Summary

One of the contractual requirements for NASA Contract NAS 2-2485 is that the
feasibility of infrared trackers be investigated. A system study of the
parameters involved shows that a planet tracker able to track planet edges is
theoretically feasible if the full 38-inch aperture were availsble.
Practically, however, development of such a tracker would require a signifi-
cant advance in detector manufacturing techniques to manufacture a detector
array of the necessary size and complexity. Further difficulties encountered
with chopping of the incident bundle lead to the conclusion that high accuracy
infrared planet trackers are not practical at this time.

In general, infrared trackers of therequired type can be divided into three
categories, namely, electronic scan, mechanical scan, and multiple detector
types. In order to operate from planet emission, the detecting element must
operate in the spectral region dictated by the planet temperatureé For the
worst case analysis, the lowest temperature involved is about 1507K. Tempera-
tures in this region require infrared detectors operating at wavelengths
greater than 20 microns.

L.2.1 Electronic Scanning Systems

The only uncooled electronic scanning device currently commercially available
for operating in this spectral region is the Westinghouse Thermicon {Ref. L.l).
This device utilizes a vidicon gun and a special thermally sensitive retina.

L-1
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Current types of this tube use magnetic sweeps which 1limit the desirability
of its use for the tracker application because of weight end power require-
ments. Although the detail specifications for the tube are classified, it

can be said that the sensitivity of the tube is too low for planet tracking.

A second type of electronic scan although not commercially available has been
made by Philco and is called Filterscan (Ref. 4.2). This system utilizes a
single element detector behind a speclal electronic shutter. The shutter
operates in such a manner that the scanning of a target results in a negative
contrast type of signal. Scan rates are readily adjustable so the sensitivity
of this type of system is identical to that of any single element detector
system if background rediastion is properly considered, thus the data in
subsequent sections should suffice.

4.2.2 Single/Multiple Detector Arrays

In order to determine the feasibility of utilizing either scanning or
stationary detector arrys, it is required that the proper detector be selected
to metch the target temperature. The general method used to select the proper
infrared detector and determine the associated signal to noise ratio is
discussed in the following parsgraphs.

4.2.2.1 Signal to Noise Ratio Calculation Procedure

The signal to noise ratio of a passive electro-optical planet tracker can be
specified as P

S/N = - s (1)
where
PD = Signal power incident on the detector
NEP = Detector noise equivalent power.

The effective signal power incident on the detector, PD, can also be expressed

as.
Py = Po A/IM y ﬁl\ (MR(N)a (2)
- 2 o

F
where
System Aperture Area
Detector area
Focal Length
Optical Efficiency
= Modulation Efficiency
Planck's Radiation Equation
Telaetive detector wavelength reaponse

Ao
P
<4

M

N(N)

R(A
de

)

tector manufacturers do not specify relative response, instead
is normally published where

Typically
data for D*
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3

Y _ A af
D, - NER. (3)
where A f is the measuring bandwidth,
However, N
* >
T )
Direax
Substitution of (4) and (3) in (1) yields
'iz. by s
= _A°_A° IN()\D:AX (5)

N FFAC %

The integral has been computer calculated for typical planet temperatures
and typical infrared detectors. Data for infrared detectors was obtained
from Space/Aeronautics (Ref. 4.3).

4.2.2.2 IR/OAO Planet Tracker Signal-to-Noise Ratios

The aperture area Ao available for the IR/OAO could feasibly be as large as
38 inches in diameter; however, since the system previously requested (Ref.
4.4) had a nominal aperture of six inches in diameter, this size has been
used for the following calculations for comparison.

Typical sizes for small infrared detectors which are currently available are

about 0.1 mm or .004 inch square, thus for an instantaneous field of view of

one second, a focal length of 825 inches is required. Assuming an optical

efficiency of 70% and a modulation efficiency of 40%, equation (5) becomes
S/N = 1.18 x 10~

Based on the above calculations, the following signal-to-noise ratios are

obtained using the types of detectors indicated:

(20°k)
Ge,Si,Au Ge,Si,Zn Ge,Si,Au Te Ge,Cd GeAu  InSb
Venus .62 45 039  .007 3.1 .90 .022
Mars 45 .36 .028  .056 2.5 .06 013
-3 -6 -3 102
Jupiter .016 .03 10 10 .3, 10

All of the above detectors require cooling in the region of 20 to 60°K
except the Te and InSb detectors which operate at 77 K.

Similar calculations for room temperature Ge. immersed thermistors yield S/N
ratios of .51, .32, and 102 for Venus, Mars, and Jupiter, respectively. For
the purpose of this calculation D* was calculated from Ref. 4.5 and it was

4=3
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further assumed that the response cut off at 20 microns.

If the total 38 inch sperture werezavailable, the overall signal-to-noise
retio would be increased by (38/6)° = 40 which would make operation realizable
providing implementation is feasible with the cadmium doped Germanium
detector.

Assuming that the total aperture is available, two different detection
schemes can be visualized. The first of these would utilize a detector array
similar to that discussed in the original planet tracker proposal while the
second would use a linear array and auxiliary scanning mirror. Both of these
systems have one common feature, namely they operate on a time sharing basis
with the proposed IR/OAO spectrometer. This can be achieved with relative
simplicity by aluminizing the back surface of the spectrometer chopper so
that during the spectrometer off period the energy incident on the rear of
the chopper is reflected to a tracker detector array as shown in Figure h-2.

The linear detector array should cover the total field of view 270" in one
dimension. To provide the proper characteristics the array should be

divided into 200 elements, each corresponding to a one second square field of
view (.00k x .00k in.) and approximately seven additional collinear detectors
element on each end of the array. These latter detectors would have a field
of view of sbout one by five seconds. The layout in the focal plane region
is described in the accompanying sketch.

The oscillating mirror would oscillate at about 250 cps, with an amplitude of
2! 15* so that the field of view swept out would then be 4' 30" square.

Target location can be obtained along one axls from detector location and
along the other axis from the signal characteristics. If the image is
positioned so that the planet is at the center of the field of view and the
mirror is vibrated at 250 cps with a peak to peak amplitude of 4 minutes
about null position, the imege spot will be swept back and forth over the
detector array, and a 500 cps square wave detector output will result. If
the position of the image is at either edge of the array, a 250 cps square
wave detector output will result. A Fourierranalysis of the detector output
shows that the amplitudes of the 250 cps and 500 cps signal components vary
as a function of image null position. The relative amplitude of the 250 cps
component increases almost linearly with the relative movement of the image
null position. This signal component would then be used as an input to a
servo system which would position the vibrating mirror so as to maintain the
image near the center of the detector. Target location can then be determined
from mirror position.

In all cases many detectors would see the target on each scan. It is
desirable to locate only the channels intersecting the planet limb. This
can be -accumplished by electronically scanning across the array to locate
the two end detectors generating a signal and only processing the data from
the two channels concerned. .

-l
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Comparison of the above approach with the arrasy discussed in the original
proposal LMSC 893537 yields the following important points.

1. The detector array originally discussed in LMSC 893537 utilized 6h4
detectors. The present system utilizes 214 detectors, which is a
disadvantage both with respect to detector packaging and the complexity
of the electronics. However, it should be possible to locate edges

accurately with the large array.

2. The linear array has the further advantage in that it has the capability
of locating the geometric center of the target providing extremely cold
and resulting poor S/N ratios do not exist at the edge.

3. The linear array has several disadvantages. Probably the major dis-
advantage is that scanning of the field of view as suggested can lead
to generation of spurious background signals. Ideally those signals
can be eliminated but practically they are extremely difficult to
eliminate. This arises because the mirror energy from surrounding
objects can be reflected on the detector and cause spurious signals.
Stops and baffles can minimize this problem, but to be completely
successful, all the stops must have the same temperature emissivity
product, which can pose a difficult problem.

L. Either system to operate properly would rsqnire the full aperture.
This can only be accomplished with the 45~ beam splitter shown in
the sketch. Such a system automatically blocks out a certain amount
of energy from the spectrometer slit. Depending on the actual
dimensions this could be as much as 50%, which could impose S/N
problems at the spectrometer output.

5. The actual manufacture of either array, or IR detectors, is extremely
difficult and possibly impossible unless photo etch techniques could
be utilized. Photo etch techniques for similar detectors are under
development by Honeywell at this time.

In summary, it is feasible to develop an infrared planet tracker using a

38 inch aperture and a cadium doped detector array; however, detector
development would probably require an advance in the state-of-the-art.
Cooling requirements would be relatively severe for long term application.
With proper design the tracker could locate the planet edges rather than the
thermal centroid.

4.3 PRECISION PLANET TRACKERS OPERATING IN THE VISIBLE SPECTRUM

The requirement for tracking the geometric center of planets which can appear
in crescent or gibbous phase cannot be met by any reasonable combination of
photometric balance schemes. This statement is based on interaction with
personnel at NASA/Ames Research Center and on discussions among ourselves

and with our colleagues, both inside and outside of LMSC. No one has been
able to suggest a simple configuration which could overcome the drastic
changes in illumination centroid relative to the geometric center of the
three planets we were considering. Simple geometrical calculations show that
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an energy balancing method could result in a geometric center location error
of more than 12 arc seconds for a 50% illuminated planet subtending 60 arc
seconds. Schemes which came closest involved the use of multiple detectors
and complicated logic to construct circular arc segments and then find the
center of the arc segment. These schemes appear to be particularly vulnerable
to tracking the gibbous edge of a planet and yielding false center information.
For these reasons, the approach was not considered any further after the
initial investigation because of the small probability of a feasible solution.

k.4 SPRCTRAL CHARACTERISTICS OF PLANETARY RADIATION AND VISIBLE DETECTORS

Section 3, Planet Characteristics, discussed the influence of the spectral
description of planetary radiastion on the energy available for planet tracking.
The following paragraphs of this subsection are based on the results of
Section 3.5, and extend that analysis with c¢ onsideration of the absolute
spectral response of various photo-emissive detectors such as photomultipliers.

The absolute spectral responses of the photocathodes (Ref. L4.6) available for
the CBS Recomotron (S-5, S-11, and S-20) are also shown in Figure 3.3. A
computer was used to determine the integrals over discrete wavelength intervals
of the products og each og the photocgthode sensitivity curves and black body
radiation at 6520 K, 5570 K, and 3780 K. The computed values were converted

to absolute response to minimum planet energy by multiplying by the appropriate
illumination ratios_gnd c constant. Since the computer program used H2 in
terms of watts - cm ~ micron = - steradian, an additional factor of

steradians was used in the conversion.

The resulting values for intervals in thg 0.4 to 0.§2micron regign are
summarized in Table 4.1 in units of 10-1° amps - cm © - arc sec <. This
table shows that the S-20 cathode will provide the highest response to each
of the planets for any wavelength interval from O.4 to 0.8 microns. It will
be remembered that the planet spectral calculations are based on color
temperature rather than the temperature associated with the smoothed flux.
Such temperatures would be lower than the color temperatures and would yield
results for which the S-20 improvement over S-5 or S-11 would be even greater.
If the lower temperatures are correct, it is estimated that at most the values
listed for S-20 in Tecble 4.1 are approximatly 1 percent high for Mars, 6 per-
cent high for Venus, and 7 percent high for Jupiter. The values listed for
S-5 would, however, be more than 2.5 times too high. Thus, although the
actual best temperature for each planet is uncertain, the temperature chosen
clearly indicates the superiority of the S-20 response, and the results for
that response are used in the calculations below.

The proposed planet tracker has an aperture area of 129 cm2 and has an
effective focal length of 400 inches. Taking into account the reflection
losses from five surfaces, the overall optical efficiency is assumed to be
9022% or .98% per surface. The effective collecting area is therefore 116.2
cm . The instantaneous field of view is assumed to be a .002 inch diameter
circle at the photocathode and is equivalent to 0.636 arcsec”.

4-7
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Using §Be minimum illumination from Jupiter as 2.23 x 10-16 amps - cm2 -
arcsec - over the O.4 to 0.8 micron region (from Table 4.1), the actual
planet tracker signal at the photocathode would be:

2.23 x 10 emps - cm 2 _ arcsec”® x 116.2 cm2 x .636 arcsec2

16

165 x 10~ amps = 1.65 x 10-lh amps

TABLE 4.1

Absolute photocathode response to minimum illumination per
square arc second received from each planet.

“l4-5u .5-.6u .6..Tu .7v.8u Lu - .8u

VENUS

5-20 34.6 25.8 12.5 3.0 75.9
S-11 27.2 16.4 1.3 -— L4.9
5-5 21.6 10.3 CT* -— 32.6
MARS

§-20 2.06 2.47 1.66 .50 6.69
S-11 1.63 1.53 17 .- 3.33
S-5 1.28 .95 .08% -— 2.31
JUPITER

§-20 1.19 T2 .34 .08 2.23
S-11 .93 49 0L - 1.46
S-5 .5 .31 .02% -——- 1.08
*# 6u-.65u

16

1.0 = 10~ amps - cm-2 - arcsec
This value of signal current is shown to provide an adequate signal to noise
ratio in following sections.

4.5 EXAMINATION OF ROULETTE PATTERNS FOR PLANET IMAGE SCANNING

The preceding subsections concluded that infrared tracking is not feasible and
that visible photometric balance systems were likewise not feasible. This
subsection discusses a particular form of planet edge tracking. The roulette
pattern forms the basis for the proposed planet tracker concept. The equations
for the generation of the particular scan pattern used have been previously
discussed and are shown in Figure 4.3. This section describes how the

4-8

LOCKHEED MISSILES & SPACE COMPANY




IMSC-678162

roulette pattern may take on various forms.

Figure 4.3 is plotted using this nomenclature: n is the ratio of the dither
frequency fo the fundamental scan frequency and C = = , where A is the
amplitude of sin w t component and B is the ampliitude of sin n w_t.
Voltages at the fundemental frequency drive the scan around the edgg of the
planet. Voltages at the dither frequency drive it across the edge of the
planet.

The straight line in Figure 4.3 is the boundary between the areas where the
pattern is looped and where the pattern is unlooped or open. FEach of these
patterns, while they appear basically different, one appearing as & gear
tooth and the other as an epi-cycle, are each a case of the general rgulette
pattern. For a given ,n either pattern may be obtained by varying 3
Further, for a given B one can vary n to obtain either pattern.
Figures 4.4 and 4.5 show roulette patterns for various values of n and C .
These values of n and C are shown in Figure 4.3 as numbered points
corresponding to the numbers of the photographs in Figures 4.4 and 4.5.

The special cases of the general roulette pattern are clearly demonstrated.

Of special interest is Photograph 20 on Figure 4.5. It was obtained by
increasing B in Photograph 19 until the scan lines intersected in a point.
The intersection is not precisely a point, indicating that there is a small
amount of residual phase shift. Photograph 22 represents a similar situation
where n = 10.

Photograph 21, on careful inspection, demonstrated that the phase modulation
scheme of frequency shifting the basic drive voltages and then re-adding them
produces an expanding and shrinking circle. The photograph is for the case
where B = 0. Note that the scan is actually a spiral scan. Additional
photographs have been taken for non-zero B.

These illustrations of angle modulation are not intended to show any advantage
over amplitude modulation, but are provided to form a basis for comparison
between the two.

4.6  FUNDAMENTAL LIMITATIONS OF PLANET TRACKER ACCURACY

For the purpose of these calculations, Jupiter has been utilized because it
presents the worst possible target. Several data processing techniques are
discussed and the implications on signal to noise and accuracy are discussed.
This subsection expands the signal level calculations of Section k.

and involved calculations of signal to noise ratios and the ratio of the
dither frequency to the scan circle.

In considering the performance of the present planet tracker concept and
variations from it, certain fundamental limits of performance have been
investigated. They are (1) the number of photons incident on the detector
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in a given time interval, and (2) the time interval in terms of required
information rate. These limitations are considered to be fundemental. A
secondary limitation concerns the size and shape of the field of view versus
two different scanning schemes; one employing photometric balance and the
other relying on scanning & known geometry. The contract states that the
information bandwidth is for all practical purposes 10 ¢/s. This determines
how rapidly one must extract position information from the photons in the
Planet image. From Jupiter, for the condit%ons described in more detail in
other sections of this report, there are 10” photons per second available at
the detector. Assuming the detector has g quantum efficiency of .1 and that
the time interval is .l sec, there are 10~ photonelectrons leaving the photo-
cathode in .1 sec. This implies that the signal to noise ratio is approxi-
mately 30 to 1 due to photon noise alone. If it is required to obtain
position information more rapidly than at a 10 ¢/s rate, the signal to noise
will decrease. A constant signal to noise ratio requires that more photons
must be made aveilable during the given time period.

The secondary and less fundamentel limitation concerns the nature of the

field of view and type of scan, that is, a photometric balance scheme or a
geometric center determination scheme. To determine the geometric center, one
must operate on the planet's edge. Photons coming from the center of the
planet yield no information concerning the location of the edge. It follows,
that since the only meaningful photons are those near the edge of the planet,
the size of the field of view must be on the same order as the accuracy with
which the planet's edge is to be located. There is little point in scanning
the center of the imesge if information is to be derived from the edge
crossings. Various present day earth sensors exhibit severe limitations
because the scanning scheme causes the field of view to move across the earth's
disc. The photometric balance scheme cannot track the geometric center and
therefore can use photons coming from the entire planet disc. The S/N ratio
is inherently better, but the planet's geometric center cannot be tracked.

The planet tracking scheme proposed and being investigated is severely
constrained by the worst case-worst case considerations for the planet
Jupiter.

Various choices are available to improve the S/N ratio. These are briefly
discussed in the following paragrsphs. Careful consideration must be given to
the need for solving the absolutely worst case, especially if its solution
lessens the performance of the tracker on more usual planet situations.

The following ways for performance enhancement are considered:

1. Use the entire aperture of the I.R.0.A.0. for tracking.
2. Enlarge the instantaneous field of view of the planet tracker for

Jupiter.
3. Invent a more efficient coding scheme for edge information.

Considering the fundamental limitations described previously, one of the ways
to ehhance performance is to provide more photons to the detector. This can
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be done simply if the 0.A.0. is operating in the infrared spectrum by employing
a beam splitter diverting visible energy to the planet tracker while allowing
infrared energy to pass through the beam splitter to the infrared experiment.

Enlarging the field of view for Jupiter scanning is another possibility.

For the case of 10 arc seconds Mars image, a field of view of 1 second using
our scanning scheme yields a noise equivalent angle of .2 arc seconds.
Jupiter's image is approximately 30 arc seconds suggesting that it may be
possible to achieve better performance by enlarging the field of view by a
factor of 3 and capturing about 10 times more photons. The present roulette
scanning pattern requiring a bandwidth on the order of 3000 cycles to encode
planet image position information is somewhat inefficient in terms of encoding
efficiency relative to the output bandwidth of 10 cycles. Although the coding
scheme allows a very sophisticated determination of the planet's geometric
center, it may be possible to invent a coding scheme which reduces the band-
width to the actual information bandwidth. In general, this is very difficult
to do in optical scanners, and in fact, getting the actual predetection
bandwidth within a factor of 2 or 3 of the information bandwidth is difficult.

4.7 INVESTIGATION OF THE POSSIBLE USE OF VIDICONS AS A VISIBLE EDGE TRACKER

Preliminary calculations have been made to determine the feasibility of using
a vidicon for the planet tracker. For this purpose, the responsivity of two
vidicons, namely, the 7O62A and 7038, have been selected because they were
considered to have spectral responses typical of all RCA vidicons.

Sensitivity calculations have been completed for these two vidicons. The
spectral response for these two tubes is shown in Figure L.6. Two curves
are shown for each tube. Both of these come from RCA sources. For the case
calculated, the poorest responsivity was used. The highest responsivity
would provide signal to noise ratios about twice those listed below.

Planet SZN

Jupiter 0.018
Venus 0.636
Mars 0.051

This data was calculated with the following assumptions:

1. 3.5 inch aperture

2. 33% optical transmission
3. Bandwidth 10 cps

4. Ioad resistor 10 megohms

Since signal current is so low, the limiting noise level of the system is the
Nyquist noise generated by the input load registor. The large load resistor
selected for the calculation was picked because it tends to maximize the
signal to noise ratio. This arises because the signal voltage is proportional
to the resistance while the noise is proportional to the square root of the

4-18

LOCKHEED MISSILES & SPACE COMPANY




RESPONSIVITY (AMPS/WATT)

.10

124

IMSC-6T78162

VIDICON RESPONSE
(1) RCA BOOKLET CAM-600
(2) RCA NATA SHEETS

.08

1
L

0.3

WAVELENGTH (MICRONS)
" FIG 4.6

4-14

LOCKHEED MISSILES & SPACE COMPANY



LMsc-678162

resistance. Larger loads than that selected could possibly be used, but
circuit time constants and interference problems are considered to offset the
possible gains.

Although only two tubes were studied in detail, the responsivities of many
tubes were checked and all fall within a factor of 2 or 3 of those used for
the calculations. This factor is not sufficient to make the use of a vidicon
possible for this system.

Slow scan vidicons could possibly provide slightly improved signal to noise
ratio; however, the limit achievable is restricted by the required system
bandwidth. Within this limitation, the use of a vidicon would still not be
feasible.

An additional problem associated with the possible use of the vidicon is that
the target must be discharged approximately once every frame time to avoid
underscanning the image. The vidicons are designed to have each part of the
target discharged every frame. However, if this is not done, charge builds up
on those parts of the target which are not discharged by the scanning beam.
This charge build-up and the need to increase the beam current to discharge
the highlights degrades the performance of the vidicon considerably,
particularly in the area of low signal to noise ratio. The application of
vidicons to non-TV type scan modes must be done carefully. Therefore, for
the reason of sensitivity and application problems, the use of vidicons is
considered not feasible.

4.8 CONCLUSIONS

1. Infrared radiometric balance techniques do not appear to be feasible
primarily because of signal to noise ratio problems which would require
significantly larger apertures than the ground rules allow. In additionm,
infrared planetary radiation characteristics are not well known; some
evidence indicates that there are several asymmetric gradients against
the planets which may provide fundamental difficulties for infrared
trackers.

2. Infrared edge tracking techniques are not feasible because the amount
of energy available is even less than for the radiometric balance
approach.

3. Visible photometric balance approaches are not feasible because the
wide variation of the illumination centroid relative to the geometric
center. Several scans have been proposed to circumvent these
difficulties. These scans are more complex than edge tracking schemes.

4., The most feasible technique is to employ the visible spectrum and use
an edge tracking approach. The technique originally proposed in Ref.
1.1 appears to be basically sound and was used as the basis for detailed
design evaluation.
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Section 5
GENZRAL TRACKER DESIGN CONSIDERATIONS

>.1  INTRODUCTION AND SUMMARY

Preceding sections of this report discussed planetary radiation characteris-
tics, traded off various tracking approaches, and concluded that a visible
edge tracking scheme was most appropriate. This section proceeds from that
point with a discussion of the specific edge tracking approach initially
considered, and describes the evolution through the final design concept.
The final design concept leads directly to the detailed design, febrication,
and test of the breadboard tracker.

The analyses described herein are based on three independent but corplemen-
tary approaches:

1. Mathematical analysis where appropriate equations are written and
closed form solutions are attempted.

2. Analog simulation where s cathode ray tube and photomultiplier
are used with appropriate planet masks to generate actual ercor
signals.

3. Digital computer where signal analysis programs are written for
evaluation on a large digital computer.

These three techniques are used interchangeably and significant benefits were
derived from checking the results of one against the other. The analog
simulation was particularly useful because it was used to develop actuzl
Planet tracker circuits which were then used in the operation of the
simalator.

5.2  GENERAL EXPLANATION OF EDGE TRACKING TECHNWIQUE.s

Section 4.5 discussed the use of roulette patterns to facilitate an edge

tracking scheme. This section describes, in relative simple mathematical
terms, the signal coming from the Reconotron as a result of the roulette

scanning pattern.

fignal Analysis: Significance of Various Harmonics

The edge tracking method chosen for the Planet Tracker is based on electron-
ically generating a roulette scan pattern in a vidicon or image dissector
tube. The particular patterns used are shown in Figure 4.2. These pictures
were generated on a cathode ray tube by driving the deflection plates with
the following signals:

5-1
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X = A sin wot + Bsinn wot 5-1
Y = Acoswt+ Bcecosnwt
o} o
Switching from Cartesian to polar coordinates results in a radius
vector
2 2
r = ‘:} + B2 + 2AB cos (n-1) Woﬁ] 1/2 5-2

The scan pattern formed moves in and out of a circle with a radius of
[}2A+ lelJz at the rate of (n-1)w,

pattern is applied to the deflec%ion plates of an image dissector having a

uniform circular plenet image radius [A2 + Bg]l/e focused on its photo-

cathode, the resulting output signal(n_l)w will be a perfect square
o] when the center of the scan

cycles per second. If this scan

wave (Figure 5.1) of frequency

pattern coincides with the center of %he planet imege. If the center of the
scan pattern and the center of the planet image do not coincide, a different
pattern of pulses appears (Figure 5.1a) which repeats itself at a frequency
of Wo/2 . A simple harmonic analysis reveals that the signal shosn in
Figure 5.la contains only frequencies of odd integer multiples of (n-1)Wo/ 27T
while the signal shown in Figure 5.lb contains both even and odd integer
multiples of frequency No/2TT , including the even multiples of frequency
(n-1)4o/2l . Neglecting for the moment the problem of getting the scan
pattern center and the planet image center near coincidence, it is possible
to achieve coincidence either by maximimizing the signel at frequency
(n-1)Wo/2 or by minimizing the signal at frequency 2(n-1)40/2 or some
other multiple of Wo/27 .

Signal Analysis: Fourier Composition of Reconotron Output

If we consider the pulse width modulation of the square wsave signal which
occurs when the scan circle is precisely the size of the planet, we heve
the following signal:

| ] |
EL_W__J

The scaen frequency, [ = H“—L-ﬁf and the modulating frequency, fm = ﬂ% .

& n-1)

£ = (n-l)fS

To handle the pulse width modulation, let us seperately consider each of the
pulses that occur in the period u(n—l)T' The Fourier transform of a single
pulse,
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a) Signal resulting from coincidence of
center of scan pattern and center of
planet image (zero decentration).

b) Signal resulting from non-coincidence
of center of scan pattern and center
of planet image (non-zero decentration).

Fig. 5.1
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sin 2 77 Tf
-7 |+T is 2T 2 T Tf

For a continuous sequence of these pulses, we can obtain the time response

by convolving the single square pulse with a series of Dirac delta functions.
The Fourier transform of

> dh-nk (@i = 1 S A - n )
m L(n-1)T m Ha-1)T

Convolution in the time domain is equivalent to multiplication in the
frequency domain. Thus, the Fourier transform of the pulse train is:

T sin 2 TT'T £ 1 = (- m ) =
21 Tf n-1)T = (4{n-1)T
m

sin 277 T m 4
2 (n=1)uT (£ - m ) =
m TTm n-1)T
—
2~ sin (Tm ) c{ (t - m )
" (2{n-1) 4Tn-1)T

TIm

Up to this point only circular planet images have been considered, and these
can be handled by energy balance methods. A more complete analysis of the
possible image dissector signal output is needed to demonstrate the utility
of this scan technique in locating the geometric center of partially illum-
inated planets. The complete Fourier transform, on a superposition of

pulse basis, of the signal shown in Figure 5.1b is given by

n-1
<< < Sin m. fTTp . =jeTrmp J (f- m )
{—1—- ?-—1_ 2(n-1)T C n-1 n-1)T
TT'm
5-3
where T 2T
Lwo (n-1) th
pulse width of the P pulse.

3

index number of the pulse. (n-1) pulses can occur in one
scan of the planet, ie., every 2 IT ffo seconds. In the
perfect square wave case, all (n-1) pulses are 2T wide.

5.1
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m = index number of the harmonic of Wo/2iT being considered
m= 0, +1, 42, #3 - - - -
J'( ) = Dirac delta function

At any harmonic, m , of cirecle scan frequency, Wo/21T , the Fourier trans-
form of the signal can be evaluated by taking the sum over p. For example,
if the perfect square wave occurs, all the Tp's are equal to T , and for

m equal to n-l , Equation 5.3 yields & Dirac delta function of amplitude
1/7r at frequency of 1/k_ corresponding to (n-l) Ao/27T . A similar value
of 1/iT occurs et m - (#i-1). Since the Fourier transform of cos (n-1) wWot

t is given bya[[' gn-l)WO o([f R (PL)WS] ! 5l

A

the two delta functions at + l/hT correspond to the Fourier transform of
(2/7r) cos (n-1) Wo t, the fundamental component of a square wave of unity
amplitude and period hT Thus, by evaluating the sum over p in Equation
5-3, it is possible to compare the signel amplitude at any harmonic of
Wo/2TW for any periodic series of (n-1) pulses.

The evaluation of Equation 5-3 for various conditions of planet illumina-
tion and various offsets between the planet geometric center and the scan
pattern center was done using a digital cQ uter. The computer was
programmed to plot the amplitude of the m  harmonic of Wo/2T as a
function of the separation between the planet geometric center and the scan
pattern center. To generalize the computer output for any planet being con-
sidered, a term labeled decentration was evolved. 2 decentration unit cor-
responds to a separation between the centers equal to 10 percent of the
planet radius.

Examples of the computer output are shown in the Appendix. Here, for
1nstance, the 10th harmonic of wo/21 is plotted against decentrations for
= 11 and a fully illuminated planet. When the planet geometric center

and the scan pattern center coincide (i.e., at a decentration of zero), a
maximum of the 10th or (n-1)th harmonic occurs corresponding to the perfect
square wave signal. As the centers separate corresponding to an increase in
decentration magnitude, the value of the 10th harmonic drops corresponding
to a deviation from the perfect square wave signal.

To determine which harmonic of WO/QTT would be best suited to provide
tracking information, the first 4O harmonics were plotted against decentra-
tion for six planet illumination conditions ranging from half illuminated to
fully illuminated. Of these 40 harmonics only the 10, 19, 20 and 21 were
applicable. These plots comprise the Appendix. It was initially thought
that it would be desirable to use a harmonic which provided = minimum at
zero decentration such as would occur with the 20th harmonic, an even
integer multiple of frequency (n-1) WO/2‘T' However, Appendix 5.1 shows
that the 20th harmonic also has minimums at values of decentration other
than zero. Other harmonics such as the 19th and 21st had single minimum at
zero decentration for fully illuminated planets. The
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harmonic providing the most unambiguous indication of coincidence between
the planet geometric center and the scan pattern center for all conditions
of planet illumination proved to be the 10th, which always provided a
significant meximum at zero decentration.

In the preceding paragraphs, the discussion has been centered about the 10,
19, 20, 21 harmonics of the signal. It should be emphasized that these
particular harmonics epply only if n = 11, which was picked arbitrarily for
the computer analysis. In general, the harmonics of concern are (n-1)io,
2(n-1)fo, and 2(n-1) # 1 fo, respectively.

5.3  ANALYSIS TECHNIQUES, MATHEMATICAL, DIGITAL, ANALOG

We digress here for a discussion of the three principal analytical tools
employed to determine the amount and form of the error signal generated for
a given planet decentration; i.e., for a given displacement of the planet
image from the tracking null center, what is the change of the electronic
signal resulting from this angular displacement? These three techniques
determined the final tracker design.

The mathematical techniques used are based simply on signal analysis using
conventional Fourier techniques. Examples of such analyses are shown in
Section 5.2. Obviously, the hand calculation of the harmonic content of
numerous harmonics of the Reconotron output signal is tedious and time-
consuming. For this reason, the calculations in all cases were completed on
an IMSC 7094 digital computer. The computer outputs were checked in a few
instances by calculating the magnitude of certain harmonics by hand and more
generally by comparison with the information obtained from the analog
simulator.

The computer programs for harmonic analysis are based on a geometric
determination of whether the scanning spot is inside or outside the planet
image. If the spot is outside the planet image, there is no output from the
Reconotron. If the spot i1s inside the planet image, a signal results. The
time sequence of the spots crossing the planet horizon generate a square
wave as a function of time which can then be evaluated by computer-based
Fourier enalysis techniques which are well developed. The following pare-
graphs describe the calculation procedure in more detail.

The geometric aspects of the computer program are constructed along the

following lines. The scanning circle is deviated by these X and Y voltages:
X = A sin wot + B sin nwot 5.3.1
Y= A cos wot + B cos nwot 5.3.2

The locus of the spot driven by these voltages is a roulette pattern. To
compute the amount of time the scanning spot spends inside and outside of a
circle or a combination semicircle and semielipse (for the gibbous case)
whose diameter is equal to the diameter of the planet image, equations 5.3.1
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end 5.3.2 are written in polar coordinates ( ¢ , ©).

The instantaneous pesition of the spot represented as & radius vector from
the center of the planet image is compared to the planct radius. If the
magnitude of the radius vector is greater than the planet radius, a "0" is
written; 1f the magnitude is less, a "1" is written. If the instantaneous
position of the scanning spot is on the planet edge, the immediately
preceding symbol is written.

Since the instantaneous position of the scanning spot is a function of tine,
a sequence of l's and O's is generated where each symbol represents a given
time increment. The time increment is scaled according to the frequency w
and nw . The sequence of "1"'s and "0"'s is formed into a square wave which
is reagily able to be represented in . Iourier terms using the high speed
Fourier computer program, a program which has been in use at IMSC for signal
analysis for several years.

Planet decentrations are readily handled by this technique by introducing
appropriate translation terms, X and Yo * This basic analysis technique
generated practically all the dat in the Appendix.

The analog simulator which proved to be an equally powerful tool as the
digital computer was designed and fabricated from existing LMSC components

for use on this program. It actually was an adaptation of an amplitude
probability distribution analyzer used in noise studies, which consists cf a
conventional cathode ray oscilloscope, an oscilloscope camera housing contain-
ing a photomultiplier, the photomultiplier power supplies and amplifiers, and
appropriate planet masks. The planet masks are in the form of metal cutouts
in the shape of a planet and are placed on the face of the cathode ray tube.
Voltages are applied to the X and Y deflection amplifiers which deviate the
spot on the cathode ray tube in a planet tracking mode. when the photomulti-
plier "sees" the scanning spot through the hole in the mask, a signal results.
When the scanning spot crosses the edge of the mask, there is no signal. The
photomultiplier output is therefore a square wave in time where the individual
square wave pulses are pulse width modulated according to the time duration
that the scanning spot spends in the mask aperture. This analog simulation
assembly replaced the optics, Reconotron, radiation source, radiation source
optics, and optical bench of the planet tracker and allowed the complete
design and checkout of practically all the planet tracker electronics ia the
absence of the Reconotron (which was delivered late).

In typical operation, the X and Y voltages were generated by a series of
synchronized oscillators which were eventually replaced by transistorized
oszillator circuits used in the final planet tracker design. As various
circuits were designed, they were tested on the simulator and configured in
final form. They were then used along with the simulator to generate waveforms
which were used in the design and checkout of the remaining circuits. The
photographs shown in Section 4.5 were all generated by this analog simulator.

o=
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In the development of the digital computer program, two minor programming
errors, which were significant only in certain extreme cases, were detected
because of a discrepancy between the digital computer output and the informa-
tion obtained from the analog simulator. Without the simulator, it would have
been difficult to discover the problems because the program yielded satis-
factory results for most of the cases examined.

The use of the simulator, however, was not without its difficulties. Problems
were encountered with the long decay time of the cathode ray tube phosphor
which prevented simulation of rapid signal decay times. This problem was
reduced by replacing the phosphor with a faster response phosphor, but one
which exhibited a "halation" effect. The halo was an inherent characteristic
of the CRT and resulted from scattering of beam electrons causing a "halo"
around the light spot. This problem was overcome by incorporating a thresh-
old circuit at the output of the photomultiplier which eliminated that part
of the signal associated with the slow rise and fall times caused by the halo.

Detailed evaluations of electronic circuit performance were accomplished
using the simulator. This allowed optimization of the circuitry without the
Reconotron and associated optics.

Tracking susceptibility to noise was tested using the analog simulator and a
white noise generator. It was determined early in the program that the
tracker could find and track semi-circular planets down to a signal-to-noise
ratio of 10.

5.4 SIGNAL OUTPUT FOR GIBBOUS CASE

To determine the effect that a circular or gibbous planet (or a planet with
radiation dropout on one side) would have on the signal output, the planet
tracker computer signal analysis program was run for seven different cases.
Case 1 was the full planet with a radius = , 2-% 3
(a2 +b2) = (101)% where a = 10

is the amplitude of the fundamental frequency end b =1 is the amplitude
of the dither frequency. Cases 2 - 7 were gibbous planets where the minor
axis of the elliptical section was varied.

Data was calculated for gibbous planets with elliptical edges corresponding
to eccentricities from 0.0 to 1.0 in steps of 0.2 (see Figure 5-2).

The harmonics calculated include the 1, 10, 11, 19, 20, and 21. These
harmonics were calculated for decentrations in the x and y directions for
planets having a gibbous side as shown in Figure 5.2,

The initisl Planet Tracker design philosophy was based on utilizing phase
information from the fundamental or circle frequency, fo, to drive the scan
toward a null at the circle frequency. When null was achieved, it was
planned to switch to 2(n-1)-1 f, for fine tracking and proceed to null this
component since it was more sensitive. This approach wes based on the fact
that computer analysis of the signal harmonics indicated that the 2(n-1)-1
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harmonic of the signal went to almost zero when the image and scan were
aligned. As time progressed, it became evident that the computer outputs
were somewhat in error, leading to the discovery of two programming errors.
These errors were corrected and final harmonic data calculated. The data
for the tenth harmonic is provided in the Appendix of this report.

Investigation of the refined data showed that it was difficult to proceed as
originally planned. This arose as a result of the fact that within the
limits set by nulling the circle frequency, more than one null occured on
the 2(n-1)-1 harmonic. Techniques for selecting the correct null were
investigated; however, they all seemed difficult because of the variations
involved in setting thresholds for different gibbous situations. As a
result of this, it was decided to revise the basic approach.

The approach selected performs initial acquisition as originally planned
with final fine tracking achieved by pesking (n-1) f . The reason for this
selection is evident from reviewing the computer datg. For example, motion
in the Y direction produces a peak signal on axis in all gibbous situations.
Motion along the X axis produces good peeks in all cases; however, in some
cases the peak is about one decentration from the center line.

For the corresponding worst target situation, Venus has a radius of about
5.5 seconds when A/B = .8. This will result in an error of one tenth of
5.5, or 0.55 second error. In the case of Mars, when A/B = 0.8, the plenet
redius is almost 4.8 seconds, so an error of .48 second is possible.
Jupiter is always almost round (A/B = .98) and thus presents no problems.

The nominal 0.55 second error encountered in the case gbove is considerably
less than the 1.6 second specification and only exceeds the goal by .05
second.

Comparison of the digital computer data and the analog computer data for
approximately the same decentrations indicates the results may be better
than those calculated from the digital data. This arises because the
digital data was "rounded off" for each decentration unit.

These paragraphs described the final results of the rather extensive digital

computer and analog simulator analyses and briefly reviewed the evolution of
the planet tracker signal processing design.

S5.4.1 Mathematical Analysis

A suggestion made by M. Hansen of NASA/Ames Research Center concerning
scanning pattern generation involves the use of amplitude modulation of
the following form:
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o] o o
Investigation showed that this scan pattern generation technique is not as
satisfactory as the previously described technique because: 1) it is diffi-
cult to implement; 2) it provides no fundamental advantage in sensing image
position errors; 3) it generates peculiar periodic waveforms which spread
signal energy into several harmonics rather than tending to concentrate signal
energy in a fey harmonics. It is also not obvious that this technique does
not introduce considerable ambiguity in the location of harmonic nulls.

5.5 TRACKER CONCEPT DETATLS

Section 5.4 described the evolution of the signal processing techniques for
the design of the planet tracker. The discussion was primarily based on
analytical considerations. The activities described in Section 5.5 involves
the implementation of the analyses in a tracker configuration and parallels
the activities discussed in Section 5.k.

The basic acquisition and scan circuitry in the block diagram (Fig. 5.24)is
almost identical to that originally proposed. However, to incorporate the

peak seeking circuitry, it has been necessary to include & third component in
the scan. The details of this scan motion and the subsequent signal processing
ard discussed in the following sections.

The scan c onsists of a rosette type pattern which slowly moves around in e
circular manner. In order to generate a scan of this type, it is necessary
to generate three different frequencies which are synchronized. The three
frequencies are called, respectively, the circle, dither, and slither
frgquencies. These three frequencies in addition to components, shifted
90, are respectively swmmed and applied to the deflection circuits of the
Reconotron.

In the block diagram (Fig. 5.24) the three frequencies are develqpe% froa the
dither frequency clock (nf = 1200 cps) which is counted down by = ,

(n = 12), to develop the circle frequency which is in turn counted”down by
1/p (P = 5) to develop the slither. Since the outputs of the countdowns are
square waves, the individual frequencies are filtered to develop sinusoids
#ith less than 1% harmonic distortion.

In order to accomplish initial target location, it is necessary to cycle the
amplitude of the circle diameter. This is accomplished by sawtooth amplitude
modulation of the circle frequency amplitude during the search mode. The
sawtooth is generated in a ramp generator.

In the search mode, the slither frequency input to the scan summer is turned
off and the scan circle changes in amplitude. Upon intersection of the scan
with a target of sufficient amplitude, the signal threshold is exceeded and a
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narrow pulse (about 2.0 ms) is generated. This pulse occurs at a rate equal
to the circle frequency, fo, and is thus passed through a f bandpass filter
and subsequent limiter to normalize signal amplitudes. ©

The location of the target intersection is determined by phase detection of
the resulting f signal with the f scan components. The output of the two
(X and Y axes) phase detectors is gmoothed and used as an input for the ¥

and Y Reconotron drive amplifiers. Thus, the center of the scan circle moves
toward the center of the planet image.

As the scen and image become aligned, a component at (n-1) f is generated

as a result of the fact that more dither loops intersect theotarget. This
component is filtered, limited, and integrated in a diode detector low pass
filter circuit. When the output of the low pass filter exceeds the mode
threshold, 1t provides one of two outputs to an AND gate which flips the
search track switches. The second input to the AND gate is provided when the
scan circle diameter is equal to the known target dianeter. This inrormation
is generated by comparing the scan circle diameter or the ramp generator
output to the target size input.

As the AND gate is energized, all the search track switches are cnergized to
the track mode. At this time the ramp is turned off and the target size is
fed directly to the scan amplitude control, thus fixing the scan diameter.
Also, the l/P countdown starts slither motion. The output of the (n-1) f
amplitude is at fO/P and this frequency is filtered and passed through X and
Y phase detectors and subsequently to the X and Y drive, with such a palarity
to drive the signal toward a maximum. The resulting error signal is scaled
from the X and Y drive signals.

The block diagram shown in Figure 5.6 was further modified from the original
concept by the addition of the slitner circuits. The revision was necessary
because analysis of the computer date indicated it would be more edvantage-
ous to peak the signal on the (n-1) f signal harmonic than on the 2(n-1) 1
f harmonic. More specifically, use Of the (n-1)f harmonic eliminated
several double null conditions that could exist whgn gibbous vlanets were
being tracked.

The slither circuits were added to the overall diagram because the (n-1)f
signal harmonic must be driven to a peak rather than a null as had been tﬁe
case with the (2n-1)-1 f _ harmonic. Thus, in effect, the slither circuits
differentiate the fo harmonic.

5.6  CHOCSING THE VALUES OF n, A, AND B

The relationship between n and A/B which determines the shape of the
roulette pattern has been discussed in Section 4. Also, it has previously
been established that the reltaionship between the planet radius R and the

value of A and B must be /
2
R=(A2+B)l/2
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to provide a square wave output when the scan pattern circle is coincident
with the geometric center of the planet image.

It was originally decided to fix the value of B and let only A vary to
accommodate the various planet sizes. The value of B was to be set at ten
percent of the radius of the smallest planet. This would insure that the
scan pattern would penetrate far enough into the smallest planet image to
provide a suitable signal and yet not allow a loop of the pattern to extend
through & givbous planet and disrupt the signal logic. If these conditions
were met for the smellest planet, they would certalinly be met for all larger
planets. Ahen the value of B was fixed at ten percent of the radius of the
smallest plenet, it was less than two percent of the radius of the largest
planet. Due to the nonlinearities inherent in the deflection circuit of

the imege dissector, it was impossible to meintein a perfect scan circle when
the scan pattern covered a large portion of the image dissector photocathode.
Thus, when the dither amplitude, B , was less than two percent of the scan
circle amplitude, A , a change in the signal output large enough to cause an
unacceptable error occurred. By fixing the ration of A/B at 10, a suitable
signal was obtained for all planet sizes.

The determination of the velue of n was based on the premise that it is
desirable to have es many loops in the roulette pattern as possible to obtain
the maximum sampling of the plenet edge. However, there are two basic limita-
tions on how large n can become. The first is the desired information band-
width of 10 Hz placed on the tracking output signal. The second 1s the
maximum preamp bendwidth that can be used and still maintain a signal to noise
ratio of at least 10 at the preamp output for the lowest planet radiance.

The intormation bandwidth requirement of 10 Hz requires that the circle
frequency be at least 10 Hz. However, . large electronic components must be
used to meke an oscillator of such a low frequency, meking a larger frequency
more desirable. In order to avoid any interference with the laboratory 60 Hz
power, & scan circle frequency of 100 Hz was chosen. It was then determined
that the maximum preamp bandwidth that would still allow a signal to.noise
retio of 10 had its 3 db point at approximately 3000 Hz and rolls off at 6 db
per octave. The maximum fundamental component of the signal square wave that
could be accommodated under these conditions was found to be 1100 Hz. Since
the circle frequency was set at 100 Hz and since (n-1)100 - 110C, the maximum
value of n 1is 12.

This discussion has indicated that the determination of the values of n,
A, and B were made purely on a practical engineering basis. At the time
the electronic circuitry was being designed, no optimization calculations
hed been performed. Volume II of this report shows how the exact values of
n, A, and B should be determined for the optimum scan pattern.
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5.7 SIGNAL TO NOISE REQUIREMENTS

The electronic system developed to track the geometric center of Mars, Jupiter,
and Venus, and described in Section 6, requires an input signal to noise
ratio of at least 10 in order to work effectively. To fully specify this
signel to noise ratio, the measurement conditions must be stated. The final
electronic configuration has a 100 Hz circle frequency, a 1200 Hz dither
frequency resulting in an 1100 Hz signal output, and a 2V Hz slither fre-
quency. <this combination of frequencies allows the required output informa-
tion bendwidth of 10 Hz to be met and results in a preamp noise equivalent
band#idth of 3000 Hz. The signal to noise ratio that is under consideration
is therefore the peak signel at the imasge dissector output obtained from a
scan of the planet image divided by the "noise in signal” contained in a
3000 Hz bandwidth.

The signal to noise ratio that will result when a planet is imaged on the
photocathode of the image dissector through a 5-inch diameter opticel system
is determined in the following manner. The signal current referred to the
photocathode surface is given by:

oD
I =A.f>.TjN(,\)6(>) an -
s o} /s -
where
IS = signal output in amperes o
Ao = collecting area of the optics = 125 cm
. = fleld of wview determined by the image d%ssector aperture and
the optical focel length = O.84 arc sec
T = efficiency of the optical sgstem = 0.59
N(X) = planet radiance in watts/em~ - arc sec” - micron
= responsivity of the image dissector in amperes/watt
d A = wvavelength in microns

The value of the integral has been determined for all three planets using a
TO94 digital computer (see Sections 3 and 4). The smallest value of the _
integral occurs in_the case of Jupiter and results in a value oi .02 x 10
amps/cmL - arc sec . Substituting in equation -1 results in

X ]
6 = 1.1 x 10 Lt amoperes

16

-1
IS = 125 x 0.84 x 9.50 x 2.2 x 10

The "noise in signal" referred to the photocathode surface is given by

1 =(2ear: I;Jl/‘? -2

where e
f

-1
charge on an electron = 1.6 x 10 2 coulombs
electronic bandwidth = 3000 Hz

Substituting in equation -2

5
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I = 2.1.6 x10089 . 3x103 . 1.1x10% ©f2

3.24 x 1071 amperes

The signal to noise ratio is then given by
s/N = I -3
I
n

1.1 x 10° ¥
3.2h x 10710

= 3.4

Since the electronic system requires a signal to noise ratioof at least 10,
system modifications must be made to achieve effective tracking for the
lowest planet radiance levels. Two basically different approaches are
available: either the electronic system must be modified to work at the
present signal to noise ratio, or the signal to noise ratio must be increased.
The modification of the electronic system could possibly be accomplished, but
not without a complete system redesign. The modifications would consist of a
series of small changes to each of the present electronic subsystems. The
results of the scan pattern optimization study would also be incorporated into
these modifications, but at this time it is not certain that the final system
could operate under the present signal to noise conditions. Only after the
system has been constructed and tested can a final determination of its
effectiveness be made. To increase the present signal to noise ratio by a
factor of three, it is necessary to increase the radiation power falling on
the photocathode by a factor of nine since the signal to noise ration is
proportional to the square root of the signal current. Assuming the present
quantum efficiency of image dissectors will not be significantly increased

in the near future, the optical collecting area must be increased by a
factor of nine to obtain the desired signal to noise ratio. The resulting
15-inch optical system is very undesirable and certainly not within the
planet tracker specifications. However, the signal to noise ratio could be
increased by the desired amount if the bandwidth of the preamp were reduced
by a factor of nine. The result on the entire system would be that the
output information bandwidth would be reduced from 10 Hz to 1.1l Hz.
Considering that large astronomical telescopes are to be positioned, and
based on design consideration evolving from IMSC's Apollo Applications
Program studies, a 1 Hz information bandwidth might be entirely acceptable
and possibly more reasonable than a 10 Hz bandwidth. Changing the operating
frequencies of the electronic system would not require a complete redesign,
but merely scaling changes to the present system where effective planet
tracking capabilities with an input signal to noise ratio of 10 have

already been demonstrated.
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5.8 OPTICAL DESIGN CONSIDERATIONS AND CONSTRAINTS

The general requirements for the planet tracker optical system are to collect
enough energy (energy equivalent to what would be collected for planet

tracking from the IROAO), place an image of appropriate size and angular
resolution on the photocathode of the Reconotron, and to achieve these require-
ments within a package diameter of 7" x 12" long.

The specific requirements, i.e., those which were required to be met by the
optical design, are:

Angular Resolution = 1 arc sec

Diameter of Airy Disk = ,002 inch

F.0.V. (square) L.5 x L.5 arc min

Max. dimensions of whole package = 7" diameter x 12" long
Sensor: Type CL-11L7 Electrostatic Reconotron

Several designs were considered initially and a Zoomar objective and a Luminar
field lens were finally selected. The combination provided an f£/80, 5"
diameter, £ = LOO" system.

The design approach emphasized using commercially-available telescopes, because
of their on-the-shelf availability and low cost.

determine the contribution of the Airy disk to system response. For the purpose
of this analysis the planet can be considered an extended source, the edges of
which display an intensity gradient caused by diffraction. The electron beam
of the Reconotron sweeps across the diffraction pattern at the edge of the
planet. The resulting waveform is then an S-shaped ramp rather than a step
function. The shape of the waveform results from the convolution of the edge
intensity gradient and the beam sensitivity gradient.

The intensity gradient of the planet edge can be represented as the normalized
diffraction pattern of an edge type extended incoherent source which has been
defined as

2
I 1 2 sin® (Ket D)
T - T (2Se(2k & D) + T - ) )
where 21T = .5 microns
K = Y

and

n

D aperture diametsr

by R. C. Redden et al (Ref. 5.1). A plot of the normalized curve is provided
in Figure 5.3.

For an assumed focal length of 250 inches (actually LOO inches were used in the
completed tracker), the width of the diffraction pattern is
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20y .5

If it is assumed that the scan beam intensity distribution is given by the
following general Gaussian equation,

X 10'6oc = 2,08 X 10'5 m

2/ 412
1 - = & o
T
where: y = relative beam intensity
h =
6
X the distance from the peak of the intensity curve

the point on the x axis where the integral from O to x is 0.3k

h must equalr‘ﬂ-'— to normalize the ‘equation.
Thus Y = e

Y =
when y = 0.2 X = \‘%TLNS—

X, however, must be related to the beam dimensions, therefore let X = kr and
we know that r = 0.001 when y = 0.20 from the CBS data sheet.

Thus y _}r - x = kr = d,z}Ln 5 - 107K

K = 716 in.7t

Thus ¥ - e_‘t\'(716)2r2

the standard distribution of which is

S > ) = : = 5,57 x lO_h in.

hk N2 AMe N2

The convolution integral can be evaluated incrementally to a good approximation.
If one superimposes the beam spot area on the diffraction pattern distribution
and moves the beam spot by 16 while evaluating the superimposed area for each
1 ¢ increment, the total response can be evaluated. The results of such a
technique are given in Figure 5-l.

The resulting slope in the waveform edge as illustrated in Figure 5-L shows a

10 to 90% rise time of the equivalent of 2.5 arc seconds. An increase in focal
length will increase the linear dimensions of the diffraction pattern while the
scan beam remains the same. Since the overall image size increases at the same
rate as the edge, an increase in focal length would tend to steepen the waveform.

Comparison between the longer and shorter focal length systems, on the basis of
the requirements, is listed below:
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384" System 210" system
s/N Best in Track Mode Best in Search Mode
Linearity Best, utilizes minimum
sensitive surface
Drive Electronics Same Same
Size Somewhat larger than spec. About equal to spec.

The longer focel length system is chosen because it will provide better
tracking capability.

The final opticel system configuration is shown in Figure 5-5 and consists
of a Zoomar Reflectar of 40" focal length, cffective sperture £/8, and 5"
dismeter, used with a Luminar of 16 millimeter focal length. Tue object
distance is 17.6 millimeters and the image distance is 176 millimeters,
giving a magnification of 10 times. (Note: The "object distance" (or short
conjugate) is between the "object-sided nodal point" of the Luminar and the
primary image ("the object") of the Zoomer Reflectar. The Image Distance"
(or long conjugate) is between the "image-sided nodal point” of the Luminar
and the image on the Reconotron (10 x magnified). )

The final configuration has an effective focal length of LOO" and an
effective aperture of £/80, and a 5" diameter.

5.9 CONCLUDING COMMENTS

The informetion reported in this chapter represents a considerable part of
the entire Plenet Tracker activity. The analyses are the result of extensive
cross-checking and re-evaluation. The final designs are the distillation of
trade-off analyses which continued for seversl months. The apparent logical
sequence of section headings and technical descriptions belies the intensive
scrutiny, re-appraisals, and re-evaluations in obtaining agreement between
the various analytical techniques used and in configuring block diagram
approaches to implement the schemes analyzed.

As a result of this activity, we conclude:

1. The original design concept as proposed is basically sound, although
significant modifications are needed so that the tracker can operate
relisbly under all conditions of illumination and planet size.

2. The basic technique is a visible edge tracking technique which mekes use
of the harmonic content of the various error signals generated by &
roulette scan of the circular part of the planet image. The (n-1)fo,
harmonic provides reliable and unembiguous indications of decentration
direction and magnitude for all planetary cases considered.

3. The analytical evaluation resulted in the configuration of block diagrams
which allow technologically feasible and realistic hardware implementation.
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Section 6

INSTRUMENT DESIGN

6.1  INTRODUCTION AND SUMMARY

Preceding sections have described the trade-offs among various design
approaches. Section L concluded that an edge tracking system operating in the
visible region of the spectrum was the best approach. Section 5 treated visible
edge tracking systems in detail and came up with a final design approach and
recommended implementation to satisfy the requirements. This section,
Instrument Design, discusses the actual breadboard hardware. Section 6.2
contains the major information, i.e., the theory of operation. Section 6.3
describes the system operations, and Section 6.l is a short section summarizing
optical and mechanical characteristics of the breadboard hardware.

6.2  THEORY OF OPERATION

The operation of the planet tracker is discussed thoroughly in Section 5.
Briefly reviewing, the basic scan is a roulette pattern having 11 loops. The
planet is initially found in the search mode utilizing a spiral scan. The
planet tracker then switches from "search" to ™rack!". TIn the track mode, a
f /p slither modulation is used to allow tracking on the true center of the
planet rather than the center of the illuminated area. These scans are
illustrated in the photographs of Figures 6.1 through 6.5. Waveforms at
various circuit points corresponding to these scans are shown in Figures 6.6
through 6.12,

The planet tracker operation was determined on the basis of computer analysis
which provided the output amplitude of the f and (n-1)f harmonics as a
function of decentration in the x and y axes. The case of the planet with
a/b = 0.6 on the £ harmonic has been replotted in Figure 6.17 to include
phase information 8nd the outputs of synchronous O degree and 90 degree
phase detectors. The familiar S-shaped response results. A null occurs at
y =0, x = 1,5 du (decentration unit; refer to definition in Section 1;

1 du = 0.1 planet radius) for a/b = 0. The worst case would be for z/b = O,

where y = 0, x = -2.5 du. The largest resulting error for the worst case
planets of Appendix 5.4 is for a/b = 0.2, radius ' 9.6", y = 0, x = 2 du
= -2"., This exceeds the spec value of + 1.6".

Therefore, to achieve the desired accuracy, a f /p slither modulation is
added to the scan. This results in modulation of the (n-1)f harmonic
amplitude (see Figures 6.9 - 6.12). The peak of the (n-1)f ®amplitude vs.
decentration curve can be found electronically by using an amplitude
detector followed by f /p phase detectors at O and 90 degrees for x and y.
This circuit will allow tracking on a null or secondary peak, as well as the
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primary peak. Therefore, a further condition is imposed on the track mode
that the (n-l)fO amplitude must be greater than .13 amplitude units.

Accuracy of the slither mode of operation can be estimated by referring to
Figure 6.16 and the (n-1)f, computer curves. The planet tracker will track
on that point of a peak where + .5 du produces equal excursions of (n-1)f,
amplitude. This criterion is only an estimate because, (a) crosstalk effects
when using x and y slither modulation simultaneously were not evaluated; and
(b) the 20 ¢/s slither modulation changes the circular 100 c¢/s modulation
into a roulette having 4 loops. Using this criterion, the worst case is for
a/b = .8 where y = 0, x = -.8 du. The largest resulting error for the worst
case planets is for a/b = 0.8, radius = 5.6", y = 0, x = .75 du = -.42".

This is well within the spec value of + 1.6".

6.3 SYSTEM OPERATION

6.3.1 Block Diagram Explanation

The scan patterns of Figures 6.1 through 6.5 are produced by applying
appropriately modulated sine and cosine waveforms to the x and y deflection
plates of the Reconotron. The minimum circle size or f, amplitude is set
equal to the planet size by means of the external size voltages or the size
pot. The Reconotron output is amplified, the bottom or "dark" part is
clamped, and the upper or "light" part is thresholded to eliminate effects
due to variation of planet illumination. This also greatly reduces the
effect of Reconotron quantum efficiency variations across the photo cathode.

For the "search" and "track on fo" modes, the thresholded preamp signal
passes through an f, band pass filter (BPF), limiter, and x, y phase
detectors. The x and y phase detected signals then go through x, y inte-
grators, which act as long time constant low pass filters. The x, ¥y
integrator outputs are applied to the x, y drive amplifiers and thence to
the Reconotron deflection plates, and also the x, y error amplifier to
furnish the x, y output error signals. In the "track on f /p" mode, the
thresholded preamp signal goes through a (n-1)fo BPF, amplitude detector,
and x, y phase detectors. The phase detected outputs then pass through
the integrators, drive amplifiers, and error amplifiers as for the f, case.

6.3.2 Detail System Operation

The detailed block diagram appears in Figure 6.16. See also the waveforms
of Figures 6.1 through 6.12, plus circuit specifications, selection of
salient circuit characteristics, circuit diagrams and wiring diagram, and
Reconotron data sheets and specifications.

6.3.2.1 Scan Generators

The 1200 ¢/s dither signal is produced by a 19.2 KC crystal oscillator
followed by a 16:1 countdown circuit. The fundamental sine wave is selected
with a BPF for the x deflection and a 90° phase shift circuit is used for
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the y deflection. 1U0 c¢/s and 20 ¢/s circle and slither signals are produced
with additional countdown circuits, BPF, and phase shift circuits.

The amplitudes of the dither, circle, and slither signais are controlled by
modulating the height of the square waves applied to the BPF's. The spiral
circle scan is generated by applying a ramp to the f modulator (see Figures
6.6 and 6.7). The dither amplitude is slaved to produce 10% of the minimum
circle amplitude and the slither amplitude is slaved to produce 15% during
coarse slither and 5% during fine slither.

The timing signals are produced by a 2s multivibrator, two l-shots, and legic.
The ramp is generated with an integrator.

6.3.2.2 Preamp, Clamp, Threshold

A wideband preamp having a maximum gain of 800 is used. The input is
differentially coupled across the anode load resistor to minimize pickup
from the #1200 V power supply. The output, consisting of a series of pulses,
is clamped by a diode to ground and thresholded at +1 V.

6.3.2.3 f_ Band Pass Filter (BPF), Limiter

The thresholded preamp signal is filtered by a fo BPF and limited at +.5V.

The limiter is required as an AGC on the f amplitude. The f signal is small
when the planet is located at the outer extremities of the filld of view, and
much larger in the track mode.

6.3.2.4 x, y f_ Phase Detectors

The f phase detectors produce x and y error voltages which are used for
driving the center of the scan to the center of the planet during the
"search" sequence. The reference vQltage is a square wave and the input
voltage is a square wave when the signal is large enough to operate the
preceding limiter. The transfer function, Vout/@$ in, is linear for squere
waves. P 6:1 attenuator switch operates during the "track on f " mode

(t. to t_ of Figure 6.14) to reduce system gain and prevent "59tter."”

Thé highér gain is necessary during the "spiral scan,” (t. to t)),
especially for the case of a small planet located at the Outer &xtremities
of the field of view, where the duty cycle of the pulses at the f
frequency can be as low as 7.5%. During the "track on fo" mode, The duty
cycle of the pulses increases to 50%.

6.3.2.5 x, y Integrators

The input to the integrators is switched to either the f phase detectors or
the f /p phase detectors by means of FET switches, depenging on the mode of
operation. The 0.l uf integrating capacitor is connected as the feedback
element of an operational emplifier resulting in an effective time constant
greater than 10 s. The capacitor is initially set to O with an FET switch
connected in shunt. The output signals are amplified by d.c. amplifiers to
produce the output error signals having slopes of 180 mv/arc second.

67

LOCKHEED MISSILES & SPACE COMPANY



LMSC-678162

6.3.2.6 x, y Drive

The drive amplifiers are dc-coupled differential amplifiers having double-
ended inputs and outputs. The dither, circle, and slither voltages are
summed at one input and the error voltage is connected to the other input.
The outputs drive the deflection plates of the Reconotron in push-pull.
+120 V regulators are included to power this board.

6.3.2.7 (n—l)foBPF, Amplitude Detector, Low Pass Filter, Mode Threshold

The clamped and thresholded preamp signal is filtered by the (n-1)f BPF.

This carrier is full wave rectified by the amplitude detector and rf1tered by
the f /2p low pass filter to eliminate the slither modulation. The resultant
signal is applied to the mode threshold which decides whether a planet has
been found, and switches from search to track. The track gate allows the
track mode to exist only when the scan size equals the target size.

6.3.2.8 fo/p BPF; x, ¥ fo/p Phase Detectors

The amplitude detected (n-1)f carrier is filtered by the Fo/p BPF to improve
the signal to noise of the s1¥ther. The slither is phase detected with a
circuit similar to that of Bd. 8, and the resultant signals drive the X, ¥y
integrators during the track mode.

6.3.2.9 Sequential Details of Planet Tracker Operation

The following information, including Figure 6.1L, provides a detailed
explanation of the sequential aspects of the planet tracker operation:
Clock nf = = 1200 (was 1100) c¢/s

Dither (n+l)fo 1100 (was 1000) c/s

Circle £, = 100 c/s

Slither fo/p = 20 c/s

Search Repetition Period = 2 seconds

planet scan size = | Track to search track
and switch
(n-l)fo amplitude 3 .13 —— Gate

Deflection Voltages
x(t) = A(t) sin 2T £t +B sin2 Wn ft + C sin 2 T £ /pt
y(t) = A(t) cos 2M £t +Bcos2 T nft+Ccos2T £/pt
See Figure 6.1L for A(t)t ¢ = 0.15 V, coarse slither
B = 0.1V, C = 0.05 V, fine slither
V, = size voltage C = O during (a), (b), (c)
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I. Search Mode
(a) ty - tl x and y integrators are zeroed.

(v) tl - t2 Circuler scan spirals in to minimum terget size making
a maximum of 50 turns. If target is acquired, the
center of circle is moved in the correct direction
using fo resulting in a scan-like Figure 6.15b.

(¢) t. .-t Center of circle continues to be driven to center of
target on fo signal.

(a) t3 - th Coarse slither at +1.5 decentration units* is enabled
at the fo/p rate driving center of circle to center of
target on (n—l)fo carrier freguency.

(e) t, - t;  Fine slither at + .5 dec. u* is enabled at f /p
frequency. If (n-1)f_ amplitude searches 0.13 amplitude

units, the AND gate is actuated and results in switching

to the track mode. If not, the search sequence repeats.

II. Track Mode

Fine slither at + .5 dec. u* is used to position center of circle.

A(t) = vs
B = 0.1V

S
c = 0.05 v,

6.4  RECONOTRON

Section 4 described the evaluations leading to the choice of an image dis-
sector, specifically, a CBS Laboratories Reconotron, as the photosensor for
the planet tracker. This section describes the Reconotron and its
characteristics as they relate to the performance of the planet tracker.

The Reconotron, which is the name that CBS Laboratories applies to their
image dissectors, is an all-electrostatic image dissector, whose light
weight, small size, and extreme ruggedness and stability commend it for use
in aerospace applications. Tubes can be supplied with concave-convex or
fibre optic faceplates, with any of the conventional photocathodes, and with
any size or shape of aperture required by the system application. The
Reconotron consists of a metal and glass envelope containing an image section
in which are mounted a photocathode, an electrostatic deflection system, and
a dissecting aperture followed by a twelve stage, linear focused electron
multiplier.

6.4.1 Description of Operation

An optical image is focused on the photocathode, releasing photoelectrons
which are accelerated and focused on the image section electrodes into the
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plane of the dissecting aperture. Only thoss electrons landing in the aper-
ture pass through to the multiplier section, where the signal is amplified
and collected at the anode output lead.

In order to measure the signal from each point on the photocathode, the
electrostatic deflection system deflects the electronic image across the
aperture so that the photocurrent from each element of the photocahode may be
sampled or dissected in sequence. The size of each resolution element depends
on the size of the dissecting aperture.

While the data set characteristics of the Reconotron appear to be suitable

for use of this tube in a planet tracking operation, interactions with CBS
Laboratories technical personnel prior to purchase of the tube raised basic
questions concerning the tube's linearity. The linearity data presented in
the data sheet is somewhat ambiguous. The data quoted, nominally 1% linearity,
is generated only for a line through the center of the tube. For lines neot
through the tube's center, up to 10% linearity errors are possible, with the
result that considerable pincushion distortion can occur in some cases.

This type of distortion would be very detrimental to tracker performance since
linearity over the entire tube surface is a requirement.

At our request, CBS obtained additional data. This particular data was
taken on a tube with a .0035" aperture. After reviewing the data, it became
apparent that the tube's linearity would be satisfactory except possibly for
some targets in the corner of the field of view.

Concurrent with the CBS discussions, discussions were held with Jet Propul-
sion Laboratories (JPL) and International Telephone and Telegraph (ITT).

JPL has only recently become concerned about the Reconotron linearity problem
because of a new tube application. The problem is fundamental to the type

of deflection plates used, and arises because finlte space must be left

between the horizontal and vertical plates for electrical isolation. It

can and has beencompensated for in a cathode ray tube by adding small tabs

to the front of the deflection cone. We believe that JPL will issue a contract
to CBS to improve Reconotron linearity.

Discussions with ITT irdicate that their image dissector does not have
measurable pincushion distortion (less than 1%) because tighter control of
the beam can be obtained with magnetic deflection. It is also to be noted
that the ITT tube has considerably better resolution, a flat field, and lower
noise. The major disadvantages of the tube are weight and power requirements
arising from the magnetic scan. For these reasons, the Reconotron appears

to be a better choice than the ITT image dissector, particularly since the
linearity problems appear to be solvable.

The following specification was submitted to CBS Laboratories in April 1966.
A previous specification had been rejected by CBS because we had asked for
1% linearity (the linearity figure quoted on their data sheet). As a
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result of several technical discussions, CBS made linearity measurements on
four image dissectors according to our specification. The worst case results
indicated that linearities on the order of 3.5% might result. CBS said that
they would quote to that linearity, although they privately expected that

the linearity would be considerably better. On this basis, an order was
placed according to the following specification.

If poorer than expected linearity were obtained, planet tracking errors may
result ifor planet images far off axis. If such were the case, we were
prepared to incorporate analog non-linear correction circuits to the deflec-
tion drive amplifiers to compensate for the distortion. This proved not to
be necessary.

.

O O 3 O

10.

11.
1a.

CBS LABORATORIES SPECIFICATION
RECONOTRON CL-1147

The spectral response will be S-20. Minimum response shall be 110 micro
amps per lumen.

The photocathode will be of the end-window type.
The window diameter shall be 0.9" minimum.
The window index of refraction shall be approximately 1.55.

The window of the tube may be either concave, convex, or plano-concave
according to the wish of the customer, although the latter is strongly
recommended by CBS Laboratories. The window thickness shall be 0.L40"
+ 0.005" at the thinnest point (concave window), and be uniformly main-
tained throughout the extent of the concave-convex window, should that
be chosen.

The radius of curvature of the concave photocathode shall be 1.25".
The useful photocathode diameter shall be 0.75".
The aperture diameter shall be 0.002".

The deflection characteristics shall be no worse than the numbers
represented in circles on the attached Lockheed drawing. Parenthet-
ically, it may be noted that the measurements on a few tubes to date
indicate a better performance than this, but the data is inadequate
t0o be certain that such figures can be regularly maintained.

The conditions of the test are essentially those described in Section 9
of the Lockheed proposed specifications.

Resolution of 50% contrast shall be LOO TV lines per inch in the center
and 250 TV lines per inch at a point 0.2" from the electrical center.

6
The multiple gein at 125 volts per stage shall be greater than 10,

The anode dark current shall be no greater than 0.03 micro amps when
the tube is operated in such a way as to have an overall response as
to have 100 u ampers per lumen.
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13. The environment for the above measurements shall be that obtained in
laboratory conditions.

1L4. If Lockheed finds that a resistor network of 1.5 megohms per stage
is adequate, the overall dimensions of the shield shall be a nominal
6-7/8" long by 1-7/8" diameter. If, however, resistance values
other than 1.5 megohms per stage are chosen, the overall length shall
be increased to a nominal 7-1/2".

The Reconotron was delivered in late September 1966, and subsequent
measurements indicated that the tube was satisfactory.

The dark current from the image tube anode, as measured with the identical
type of equipment as used by CBS, is two or three-tenths of a nanoamp.

This is approximately an order of magnitude below the dark current measured
by ‘CBS. This decrease in dark current is attributed to the fact that many
photoemissive types of tubes, particularly those with S-20 response, tend
to "clean up" with time due to the action of the getter.

With the low dark currents measured, only several noise pulses exist every
second. These noise pulses are individual electron events. Because the
pulses are so far apart, the conventional signal to noise calculation
becomes difficult to utilize in defining the noise equivalent angle of the
system.

6.5 OPTICAL MECHANICAL DESIGN

Detailed optical design was described in Section 5.6 as part of the optical
trade-off discussion. That optical design was incorporated into a mechanical
assembly 36" long, 8" wide, and 15" high. This assembly was configured as a
laboratory breadboard which allowed sufficient mechanical, electronic, and
optical flexibility to optimize tracker performance. A sketch of the bread-
board planet tracker is shown in Figure 6.19.

The basic Zoomar lens system is shown on the left in Figure 6.19. The
field lens and the Reconotron are located in the housing to the right.
Both the field lens and the Reconotron are mounted on x,y slides so that
optical positioning is easily facilitated in keeping with the research
breadboard character of the tracker. The mechanical assembly was designed
to be fixed on an optical rail which is part of the LO" collimator used in
the checkout of the planet tracker. The actual assembly proved to be very
effective in allowing optimization of not only the optical and mechanical
parameters of the tracker, but also in allowing the checkout trouble
shooting of the electronics.
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Figure 6.19
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6.6 PLANET TRACKER WITH RADIUS SEEKER

Figure 6.18 shows the additional blocks required for a planet tracker which
incorporates a planet radius seeking circuit and, therefore, relieves the
necessity for a planet size voltage input. The improved planet tracker
would work in the following manner:

(1) The scan spirals down toward the planet size while tracking on
fo. This 1s the same step used in the existing planet tracker.

(2) When the (n-1)f, amplitude reaches a preset level, a switch closes
to stop the radius from shrinking further. The scan is now approxi-
mately equal to the planet size. The planet tracker continues to
track on fo.

(3) The radius is now modulated larger and smaller at an fo/pPa
frequency, which is lower than the slither frequency. The
resulting (n-1)f, component of the output signal is synchronously
demodulated, filtered in an integrator, and used to correct the
radius amplitude. Tracking on f, continues.

(4) After a short interval, the planet is tested to determine if it
is circular or noncircular. This is accomplished by checking
the amplitude of the 2 fj component; if greater than a preset
level, the planet is noncircular.

(5) a. If the 2 £  component is O, the planet is circular and
the radius is the correct value. The tracking then
continues on fy. The (n-1)f, amplitude is at a maximum.

b. If the 2 f. component is above the preset level indicating
a noncircuiar planet, the radius continues to be modulated,
but now the fo component of the output signal is synchronously
demodulated, filtered, and used to correct the radius ampli-
tude. The tracking is now on f,/p (slither). The radius
reaches the correct value when the f, component is a maximum
for the noncircular case.

6.7
On the basis of detailed electronic, optical, and mechanical design, and of
the various subassembly tests performed, the following comments are

appropriate:

(1) The optical and mechanical design is fairly straightforward and will
meet the design requirements.

(2) The completed electronic design is a satisfactory solution to the
requirements, although the actual design is considerably more complex
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than originally anticipated, particularly with the logic associated
with the several automatic search and track modes.

All circuits were designed to operate over the temperature environment
to be expected in space flight. The performance impact of temperature
compensation was fully accounted for and does not degrade electronic
performance.

The electronic design was packaged as a research breadboard, although
consideration was given to eventual spacecraft packaging through
component selection and board assignments. The packaging design is
readily adaptable to electronic changes. This adaptability, coupled
with the flexibility of the design itself, allows the implementation of
changes to other electronic functions, for example, measurements of
planet radius, measurement of gibbosity, exact location of terminator,
etc.

The parts count of 530 parts is realistic for space flight considering
the relatively complex function of the tracker. The estimated volume
of a flight electronics package is about 80 cubic inches.

Because the design considered eventual use, it is unlikely that the
parts count will grow significantly if the tracker is to be flown. 1In
fact, it is possible that parts counts can be reduced by the use of
integrated circuits which were not available at the time of the initial
design.

6-18

LOCKHEED MISSILES & SPACE COMPANY




———— N —— —_— o S

LMSC-678162

Section 7
PERFORMANCE

7.0 INTRODUCTION

Previous sections discussed planet characteristics and basic design parameters
as related to the planet shape, size and intensity. Following this, the basic
system design philosophy and detailed design parameters were presented. This
Section discusses the actual test procedures and test results obtained from
the final equipment design. The test procedures section includes both work

at the circuit and final equipment levels. At the equipment level, the worst
case linearity curve is plotted. Inspection will indicate the worst case in-
dividual position error, uncorrected for earth motion errors, was 2.3 seconds.

7.1 GENERAL DISCUSSION

g was performed at three levels: the electronic board level to the
specifications of Section 6, the subsystem level, and the system level. Test-
ing of the electronics was aided by use of the analog simulator previously
described. Testing at the system level was accomplished using the LO-foot
collimator and a movable aperture and source. The collimator was aligned with
the planet tracker and various planet masks were placed in the focal plane of
the collimator to simulate typical planet dimensions in the focal plane of the
tracker. The simulated sizes were selected from the data in Section 3. Exact
sizes of the planets selected are tabulated. To simulate planet motion across
the image plane of the tracker, the masks were moved in the focal plane of the
collimator where approximately 0.002 inches motion corresponds to one arc sec-—
ond motion. System measurements were hindered by earth motion of collimator
and failure of the 1900°K black body source. Motion of the collimator corre-
sponded to about one arc second of error. Measurements were made on the
round, gibbous, and crescent planets. Only the worst case results are pre-
sented.

7.2 TEST PROCEDURES

7.2.1 Optical Alignment

A collimator with a forty foot focal length was used as the basic test equip-
ment. Motion of planet masks in the collimator focal plane was used to Simu—
late planet motion. The alignment of the forty foot collimator is necessary
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to obtain a collimated bundle of light prior to installing the planet tracker
on the rails. For accuracy and calibration tests, the following method is
used for alignment.

Initially a diagonal mirror is positioned on the center line of the 18" colli-
mator mirror. An illuminated pinhole is next placed just out of the 18"
bundle at the approximate focal point which has been folded. Following this,
a good quality, first surface mirror is placed in the 18" bundle to direct

the collimated energy back to the diagonal and pinhole. If the return image
is larger or smaller than the pinhole, the relationship between the pinhole
and focal length of the 18" mirror is incorrect. By moving the pinhole in or
out, it is possible to make the pinhole and the return beam the same size,

and the instrument is collimated.

The base plate, which holds the planet tracker, can now be placed on the rail
in such a way that the energy from the collimator is passed through the
Zoomar lens, to a Luminar lens and finally focused onto the face plate of the
Reconotron tube.

A Luminar lens is used in the planet tracker to pick up the image of the
Zoomar lens and magnify it ten times on the face plate of the Reconotron

tube. The lens is mounted in a cell which in turn is mounted to a spherical
ball. The nodal point of the lens must be placed at the exact center of the
inner ball. The nodal point can be located by shining collimated light in
from one end of the lens and observing the image at the other end of the lens,
with a microscope. The lens is then moved in the ball so that it is possible
to move the ball in any direction and see no apparent motion of the image.

One end of the lens cell is threaded and is screwed to a plate which is
mounted to the inside ball and held in place by four screws. With collimated
light coming in at the BFL of lens and using a microscope to look at the im-
age at the working distance of lens, shims are added between the plate and
ball until all motion is removed when the ball is moved. Once this is ob-
tained, the nodal point of the lens is placed at the center of the spherical
ball.

The next step is to locate the Luminar magnifier with respect to the Zoomar.
This is done using knowledge of the Zoomar focal length (measured accurately
by the vendor). The Luminar lens is placed at the nominal positions with re-
spect to the faceplate of the Reconotron and the spherical ball. The final
adjustments of the ball and tube are made with the planet tracker operating.
The position of the Luminar magnifier is adjusted to give maximum signal.

7.2.2 Signal to Noise Ratio Measurements

The signal to noise is defined as peak signal voltage divided by rms noise
voltage at the preamp output. The peak signal is measured on an oscilloscope
(about L V) while the tracker is operating in the scan mode. The rms noise
can be measured in the scan mode by measuring the narrow band noise at 500
¢/s with a narrow band wave analyzer, and correcting for the noise equivalent
band width (NEB) of the preamp. Alternatively, the noise can be measured by
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stopping the scan and directing the scan beam onto the planet while measuring
the broadband noise voltage with a Ballantine 320 rms voltmeter.

7.2.3 Linearity Measurements

The linearity is checked by causing the planet image to move across the Recono-
tron photocathode. This is implemented by moving the planet mask in the focal
plane of the LO-foot collimator along the following paths. The exact position
of the mask is determined from dial indicators located on a reference surface.
The linear motion is then converted to equivalent angular motion since .0023
inches on the collimator corresponds to one arc second of motion. Tests were
performed for the following cases:

(a) y =0, x = =135" to +135"
(b) x =0, y = =135" to +135" (" = arc seconds )
(¢) x = -100", y = -100" to +100"

The x and y output voltages corresponding to planet position, are read on the
digital voltmeter.

7.2.4 Null Accuracy Measurements

The null accuracy is measured as a function of planet size and amount of gib-
bosity. A circular planet corresponding to a planet L7 arc seconds in diameter
is used as the reference. The turret containing the masks is rotated to the
next planet in line and the incremental shift in the x and y output voltages

is recorded and converted to the equivalent angle.

7.2.5 Noise Equivalent Angle

The noise equivalent angle was determined by measuring the rms a.c. output
voltages (x and y) and converting to the equivalent angle.

7.2.6 Tracking Rate Measurements

The tracking rate is measured by determining how fast a planet can move in
arc seconds per second with the tracker remaining in the track mode. To im-
plement this measurement, the planet mask in the focal plane of the collima-
tor was manually moved by turning a lead screw over a measured distance at
various rates.

7.3 TEST RESULTS

7.3.1 Electrdnics Performance Using Analog Simulator

The performance of the electronics was tested in a closed loop system by us-
ing the analog simulator previously described. The dynamic response of the
system is illustrated in Figures 7.1 - 7.7. The ordinate is amplitude of the
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Circular Planet . Circular Planet
Scan corresponds to - Scan corresponds to -
1.5 d.u. in X direction LB d.u, in ¥ direction

Gibbous Planet % = .8 Gibbous Planet % = .8
Scan corresponds to Z Scan corresponds to 2
1.5 d.u. in X direction .5 d.u. in X direction

Gibbous Planet % - .66

+
Scan corresponds to -
1.5 d.u. in Y direction

Figurs

7:7

Figure

7.6

Gibbous Planet % - .66 Gibbous Planet ¢ = .66

Scan correspouds to A Scan corresponds to =

1.5 d.u. in X direction .5 d.u. in X direction
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detector output and the abscissa is 20 ¢/s sweep. The 20 c¢/s sinusoidal
sweep was derived from the dither frequency. These curves correspond to the
computer curves modified by system response to the 20 c¢/s sweep. For the
purpose of obtalning these photographs, the dither amplitude in the axis
noted was adjusted to correspond to 11.5 decentration units. The dither on
the other axis was set to gero.

7.3.1.1 Signal to Noise

The minimum tolerable S/N was measured by injecting white Gaussian noise into
the preamp input. It should be noted that this noise does not exactly simu-
late the actual Reconotron noise. The Reconotron shot noise is In = 2e I Af;
therefore, the noise on top of the signal (illuminated) is greater than the
noise on the bottom of the signal (dark). Using a 0.66 gibbous mask and a
signal of 3.5 V pk, the electronics continued to operate properly with 0.38 V
rms, or a S/N of 10.

7.3.1.2 Null Accuracy

The relative null accuracy was observed by using a 0.66 gibbous mask and ob-
serving the shift caused by switching from "track on fg" to "track on fo/p".
A shift of 1.5 decentration units was observed as compared to the shift pre-
dicted from the computer curves of 2 decentration units,

7.3.1.3 Noise Equivalent Angle (NEA)

The NEA was measured at a S/N of 10. The x and y output voltages were 30 mv
peak to peak. Using the conversion of 180 mv/ arc second, this corresponds
to a NEA of 0.17 arc seconds peak to peak.

7.3.1.L Tracking Rate

The maximum tracking rate was measured by simulating planet movement using
the oscilloscope positioning controls. Actually, this results in motion of
the scan pattern rather than the planet mask, but the net effect is the same.
This resulted in a measurement of 15 arc seconds/second for a circle and

7 arc seconds/second for a 15° gibbous case.

7.3.1.5 Reconotron Responsivity and Gain

The responsivity and gain of the Reconotron were measured and calculated
without using the tracker optics (see accompanying data) For this test,

the Reconotron was flooded with radiation from a 1000° C black body whlch
was 5 inches from the photocathode. Initially, the Reconotron linearity was
verified by grounding the deflection plates and measuring the anode current
as a function of the black body aperture size. The measured anode current
was later found to be 52% of the calculated value indicating either low re-
sponsivity, low gain, or a combination. The gain was then calculated from
noise considerations and found to be 23% low.
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7.3.2 Final Equipment Tests

On completion of the analog simulator tests, a series of tests on the complete
tracker were performed. These tests are discussed in the following sections.

7.3.2.1 Noise Level Measurements

Tracker noise can occur from numerous sources. A complete understanding of
tracker performance requires a determination of the magnitude of each noise
producing source, with a subsequent evaluation to determine if the nolse mag-
nitude is close to its theoretical value,

Tdeally the system noise level is determined by the Reconotron dark current
shot noise. The preamp output noise due to the shot effect can be calculated
as follows:

1 1 -13
(e An®-(32x10 x21 10710 g 3 x 103)2= LU X104
The preamp output noise level is then

Sk x 1078 x .7 x 100 x .5 x 10° x 800

123 Microvolts.

For comparison, the Johnson noise out of the preamp is

(LKTR A f)lé Av ‘

20 6

1.6 X107°Y X .5 X 10

X 3 X 10° X 800 = L mv.

Thus, in the dark if no other noise sources exist, Johnson noise would domi-
nate.

The measured preamp broadband output noise level was 10 mv, compared to the

L mv calculated value. The difference arises largely from ripple on the high
voltage power supply. In practice the preamp output is set to iy volts, thus
the signal to preamp noise ratio is LOO and does not effect operation. In
actual operation the noise level is specified from the shot noise in the
signal, not the preamp noise.

The output of the preamp as seen on an oscilloscope showed pulses with rise
times of about 20 microseconds and fall times of 50 to 100 microseconds. The
pulse height was a function of the total photomultiplier dynode voltage. The
estimated pulse heights and time intervals are given below.

Dynode Voltage E Peak Average Time Between Pulses
1500 volts 1.0 volts 10 sec.
1200 volts .15 volts 100 sec.
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The basic source of these pulses appears to be leakage current. Since the
occurrence of the pulses was low, with the 1200 volt operating condition,
they did not affect system operation.

The signal to noise ratio was measured using a 1000°C black body source and
the LO-foot collimator. The anode current, I_, was measured to be 2.7 nano-
amperes (nA) with the source aperture open and .OL nA closed, for a net sig-
nal current of 2.3 nA. The output noise, € Was measured to be U450 mv rms.
This corresponds to an input current of:

i.o= o - 4,50 mv = 1.125 1077
TAV R (800)(.L)10°
Therefore, the S/N, /i, = 2.3 nA = 2,05.
T.125 A

The S/N calculated from the shot noise of the cathode current is:

I

s/N = k = Ta/u
2e(Ik+Id)Af% (2 Tk + T4 A £)2
u
- 2.3%x107
.7 X 10°  3.29 x 1071
(3.2107Y 2.7 107 3x109)% (37.0 x 10°1)%
7 1P

1.71 which is in fair agreement with the value calculated
above.

. The theoretical anode current is 21.9 nA
versus the measured value of 2.3 nA. The theoretical S/N is 5.71 versus the
measured value of 2.05. The discrepancies are partly explained by the Recono-
tron gain and/or responsivity being low by a factor of two. Other possible
causes are the losses in the optics may have been greater than the 20% esti-
mated. However, the largest amount of the error probably arises due to the
poor Reconotron spatial resolution.

7.3.2.2 Reconotron Dark Current

The anode dark current was measured to be 2 X lO'lOA for an anode voltage of

+1200 V. No change in anode current was noted at 1500 anode volts.
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7.3.2.3 Noise Equivalent Angle

This parameter is best measured with the tracker tracking a planet image be-
cause the noise and, consequently, the jitter at the threshold and the preamp
output is a function of planet intensity. Unfortunately, earth motion of the
0-foot collimator used in the test made the measurement impossible. It is
felt that the angle measured on the simulator and discussed earlier provides
a fairly accurate indication of the instrument performance.

7.3.2.L4 Optical Resolution

The resolution of the tracker was checked by scanning the 2 mil Reconotron
beam across two circular planets. The results indicate a 10-90% resolution
of 9 arc seconds. This compares to the theoretical resolution of 3-L arc
seconds.

To understand the difference, the optical resolution of the system was checked.
The check consisted of removing the Reconotron and replacing it with a Linhof
camera. Using the camera, a cross hair in the focal plane of the forty foot
collimator was photographed. The diameter of the cross hair was .0037 inches.
The diameter of the image of the cross hair, when adjusted for the magnifica-
tion of the optics involved, was .0051 inches. This diameter was measured on
a microdensitometer and represents the diameter corresponding to half peak
transmission of the image on the negative.

When this difference is converted to angular measure, it amounts to about one

arc second compared to the 9 arc seconds measured using the Reconotron. It is
therefore concluded that the poor resolution was basically a Reconotron prob-

lem.

7.3.2.5 Linearity

The linearity measurements were made for all the planet shapes listed

in 7.3.2.6, and were converted to the equivaleai angle. The x and y

output voltages were divided by 2 before being measured by the 3-place digi-
tal voltmeter to allow accurate readings. Therefore, 100 arc seconds is
equivalent to 9 V rather than 18 V.

The movement, Lg, in the collimator focal plane required to simulate 100 arc
seconds motion is:

Ls= tan 100 = ,231 in..
180
The equi ' . __tan 100 _ .
quivalent movement at the Reconotron 1is Ld = = ,192 in. The
factor for converting source length to angle isS apprgxlmated as .2L40 in. for
100 arc seconds, and readings were taken every .06 in.(25 arc seconds). Ac-
quisition can be made throughout - 136 arc seconds, and this could be extended
if desired simply by increasing the spiral scan amplitude. Linearity was mea-
sured over a region of 1100 arc seconds.
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One of the major difficulties encountered in making this measurement was
earth motion, The ends of the LO-foot collimator are supported on independ-
ent concrete blocks which are isolated from the floor. The earth motion was
typically 1 arc second in a 2-minute interval and 2-3 arc seconds over a 20-
minute interval., The earth motion was measured with the planet tracker and
corroborated with the Hilger Watts autocollimator.

All of the round and gibbous planets were successfully tracked with the source
intensity set to deliver a minimum S/N of 10 at the preamp. The few angular
deviations which exceeded the 1.6 spec can be explained by the earth motion.
Figures 7-8 and 7-9 are plots of the resulting worst case data.

Linearity was also satisfactory for two of the four crescent cases. Some dif-
ficulty in acquisition was noted on the crescent planets and it was necessary
to manually close the track switch. The two most extreme crescent cases would
not track reliably, probably due to optical blur. PFurther analysis of the
crescent cases would best be made after running computer curves for these
cases and then analyzing electronic performance with the analog simulator.

7.3.2.6 Null Accuracy

The planet null position of the wvarious round and gibbous planets was deter-
mined by taking the average of three sets of readings-to minimize the effect
of earth motion. The results are tabulated below:

Angular Position Shape
Planet (arc seconds) a/b Radius
X Y arc seconds
Reference 6 Jupiter 0 0 1.0 23.4h
Reference 7 Venus 0 +0.3 1.0 5.0
Reference 1 Mars 0.1 -1.0 0.8 5.6
Reference 2 Venus +1.3 -0.5 0.5 7.3
Reference 3 Venus +0.2 -1.9 0.2 9.6
Reference L Jupiter -0.L -0.3 0.98 20.0
Reference 6 Jupiter -0.1 ~-=.5 1.0 23.4

The centers of the planets were positioned within + ,15 arc seconds as mea-
sured on the toolmaker's microscope, so no correction was made for mask posi-
tion, The worst case deviation of 1.9 arc seconds is for the most gibbous
planet (0.2, 9.6 arc seconds radius, Venus.) This compares with the theoreti-
cal value of O arc seconds from the computer curves for this case. The second
worst deviation is 1.3 arc seconds for Planet # (.50, 7.3 arc seconds radius,
Venus), which has a theoretical deviation of about .4 d.u. or .3 arc seconds.
The third worst deviation is 1.0 arc second for Planet #L (.80, 5.6 arc sec-
onds radius, Mars), which theoretically has the largest deviation, .75 d.u.

or 2y arc seconds. The discrepancies are probably caused by poor resolution
of the Reconotron.

7-8

LOCKHEED MISSILES & SPACE COMPANY



LMSC-678162

The data taken for the crescent cases showed satisfactory null accuracy for
the #1 and #2 planets with the acquisition difficulties noted in the previous
section. The null for the #3 planet has a tendency to shift around and ac-
quisition of the #3 and #L planets was accomplished with greater difficulty.
Again, lack of resolution probably caused the problems noted.
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Section 8
CONCLUDING DISCUSSION

8.1 INTRODUCTION

This section is the last written part of the report and is written with the
perspective of having accompanied a NASA/ARC representative on a contract
reporting trip and having completed all experimental activity. Section 8
briefly discusses the trip, mentions planet tracker activities at JPL and
NASA/ERC, compares this planet tracker with others, discusses current
application interests, comments on the performance of this geometric center
tracker, and finally discusses possible areas of future work.

The previous seven sections of this report contained a logical and somewhat
chronological description of the work performed on this contract. The report
in Section 1 discussed the technical requirements and Section 2 summarized,
in some detail, the program activity. Section 3 described planet character-
istics relevant to the program and Section 4 discussed trade offs between
various tracking techniques. Section 5 treated the design analysis of the
visible edge tracker and Section 6 described the actual tracker design in

detail. The preceding section, Section 7, dealt with the experimental
results.

8.2 VISITS TO OTHER NASA FACILITIES

The follow-on contract included provisions for a trip to other NASA facilities
for the purposes of reporting the results of this program, interacting with
technical personnel on matters of common interest, learning about the planet
tracking activities of other groups at NASA/ERC and JPL, and determining
potential applications.

Facilities visited, dates, personnel contacted are listed:

6 July 1967, Jet Propulsion Laboratory
R. K. Melugin (NASA/ARC), W. H. Alff (LMSC)

10 July 1967, NASA/Langley Research Center
J. A. Dodgen, H. Kaufman; R. A. Wallner (LMsSC)

11 July 1967, NASA/Goddard Space Flight Center
W. Raskin, T. Buckler, P. Scherer, R. K. Melugin (NASA/ARC),
A. R. Kraemer, R. A. Wallner (LMSC)

11 July 1967, NASA Headquarters, J. Kanter;
R. K. Melugin (NASA/ARC); A. R. Kraemer, R. A. Wallner (LMSC)
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12 July 1967, NASA/ERC, M. Gorstein, S. Moskowitz, L. Kleimmen,
?. de Hollans; R. K. Melugin (NASA/ARC), A. R. Kraemer, R. A. Wallner,
1MSC)

The trip was very successful in that the obJjectives were efficiently
accomplished. In fact, it is earmestly recommended that serious considera-
tion be given to including such trips as a normal part of research
development contracts.

8.3 STATE-OF-THE-ART PLANET TRACKERS

Tnese paragrapns briefly discuss the state-of-the-art in other planet
trackers so that the approaches and state of development can be reviewved.
The information on the other trackers is intended to be survey information
only and does not purport to be based on a critical evaluation.

8.3.1 Digital Type Planet Trackers

One of the current trackers is based on scanning a radial type pattern on
an image dissector during the search mode. Rough tracking is achieved with
energy balance techniques and once the image is positioned in the approxi-
mate center of the image plane, the search mode is turned off and the fine
track mode is turned on. The scan in the fine track mode consists of small
radial segments. The scan is achieved by scanning a line on the image tube
while simultaneously moving the image mechanically in a circular manner.
The error signal is then generated by digitally measuring the distance from
the edge of the plenet to the edge of each individual scan line. 1Its
accuracy is 36 arc sec; this corresponds to about 1 part in one thousand
over the entire field-of-view. It contains about 1400 electronic parts.

The second digital tracker operates as follows: the tracker's image dis-
sector is programmed to search for the planet in a raster scan pattern;

when the planet is located, the planet position 1is stored in raster coordinates
and a simple digital calculation is performed to locate approximately the
planet's illumination centroid. The scan pattern is changed to a track
pattern which consists of radial line segments extending outward from the

scan circle. The center of this scan pattern is placed on the i1lumination
centrold and the circular spike scan is expanded to intersect the planet

edge. The resulting pulses caused by the scan through the planet edge

are examined for circularity in a digital computation. Elliptical terminators,
if any, are rejected, and the scan centers itself on the circular planet

edge, thereby locating the planet center.
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8.3.2 Analog Type Planet Tracker

This tracker 1s described in this report and a research breadboard has been
completed and tested. The tracker uses an image dissector and scans the
Planet edge in a roulette pattern scan. The signal arising from planet edge
croseings is evaluated in terms of its harmonic content and error signals
are generated to position the scan center on the planet's center. The
reader 1s referred to other sections of this report for details.

The tracker was developed for the application of long range pointing, e.g.,
pointing the telescopes of an orbiting prlanetary observatory at a planet with
high angular accuracy. Its accuracy is on the order of one arc second over a
field-of-view of 2.5 arc minutes. In a flight model configuration, it is

expected to weight about 20 pounds, consume about 5 watts, and occupy about
0.5 cubic feet.

8.4 APPLICATIONS FOR GEOMETRIC CENTER PLANET TRACKERS

Recent discussions, particularly those during our visits to other NASA
facilities, provided this application information. Most current interest
facuses on approach guidance for terminal guldance to planets. Both the JPL
and NASA/ERC trackers have this obJjective. There is curiosity about the
possibility of a visible earth horizon tracker being developed along the lines
of geometric center planet trackers. This interest was expressed at NASA/LRC
end NASA/GSFC. Interest remains for long range pointing, but it is certainly
much less than that expressed several years ago. Some, but little, interest
was indicated in the area of planet geometric center tracking for laser
pointing for communication purposes.

8.5 DISCUSSION OF NASA/ARC AND IMSC PLANET TRACKER

This discussion comments on the technical performance of the NASA/ARC and LMSC
pPlanet tracker end summarizes the tracker's salient festures. The discussion
is expanded and concluded in section 8.6, where possible future activities are
described. Section 8.5 is not intended to offer any additional comments about
other planet trackers in addition to those already provided. The discussion is
limited to considerations of the subject tracker.

As an initial comment, the breadboard tracker tests show that the tracker
satisfactorily met nearly all of its performance requirements with the excep-
tion of output bandwidth which is on the order of one to three cycles per
second rather than the ten cycles per second requested. In all other aress,
the tracker performed as required. It reliably searched and tracked images of
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Mars, Venus, and Jupiter under conditions of illumination corresponding to
the three cycle per second output bandwidth.

Ultimate tracker performance was difficult to assess because the tracker
performed better than the stability of the laboratory setup. During those
periods when the laboratory collimator was stable, the tracker performance
easily exceeded the requirements. The data presented in Section 7 is worst
case data and is not corrected for collimator variation.

A few words are in order here sbout the forty foot collimator on which
planet tracking testing took place. During the tests, inetabilitics on the
urder oi several arc seconds were noted and were initially thought to be in
the tracker. After much scrutiny it was determined that the collimator
itself was unstable. Recent tests, based on August 1967 measurements and
too late for inclusion in other sections of this report, yield preliminary
information that the variations are probably seismic in nature and mey
correlate with tidal periods. Deviations of 3 arc seconds root-mean-square
are often experienced, although there are also periods of several hours
where the collimator instability cannot be measured. This information was
not availsble during the testing period.

The operating characteristics of the breadboard tracker are as follows:

Field of View 4.5 x 4.5 minutes Tracking Rate 15 arc sec/sec
Error Signal Slope 180 mv/arc sec Offset Error 0.2 to 1.5 arc
Noise Equivalent Angle 0.17 arc sec depending on illumina-
Linear Slope Limits + 2.25 arc min. tion and planet shape

The research breadboard was carried to a state of completion where it is
possible to construct an engineering model planet tracker without difficulty.
For example, optical, mechanical, and electronic designs are now available
to generate the design of an engineering model. The engineering model of a
flight configuration tracker could have all of the above performance
characteristics; its estimated weight, power consumption, and size are

20 pounds, 5 watts, and 8.5 inches diameter x 13.5 inches long, respectively.

Even better performance is probably attainable with better spatial resolution
on the Reconotron. It is likely that the resolution of the tube was a major
factor in limiting the performance of the tracker to that described in
Section 7. As explained previously, the other dominant factor was the
collimator instability. We do not mean to imply that the Reconotron was
inferior in overall performance. In fact, the vendor was quite cooperative
in supplying a tube with proper linearity characteristics. More careful
attention to tube selection in the area of resolution or possibly very
careful adjustment of focusing potentials would have realized much better
tube performance.

To summarize, the performance of the breadboard coupled with the results of
the optimization study are satisfactory enough to allow the straightforward
development of an engineering model planet tracker.
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8.6 POSSIBLE FUTURE ACTIVITIES

As is normal at the completion of any experimental breadboard program

involving significant technical challenge, there are several additional items
of work which are appropriate areas for future activity. This section is not
intended to be a solicitation for additional support, but rather is a listing

of work which could be done to improve theperformance and applicability of
the planet tracker.

. As previously mentioned, the experimental evidence indicates that the
planet tracker breadboard performed well enough so that the design can
readily be configured into an engineering model of space hardware.
During the design, attention was paid to electronic design which
would operate over the temperature range encountered in space flight.
Also, board layouts were accomplished on a circuit function basis so
that individual boards could be repackaged using welded modules or
integrated circuits on a board-by-board basis. Optical and mechanical
design was also done so that the tracker could easily be built as an
engineering model. 1It, therefore, appears to be quite reasonable to
consider rebuilding the breadboard tracker as an engineering model.

. The laboratory tests indicate that further work needs to be done on
the CBS Laboratories' Reconotron, particularly in the area of spatial
resolution. Tt would be appropriate to interact more extensively
with CBS and possibly Electro-Mechanical Research regarding electro-
static image dissectors for applications of this type. Emphasis is
also needed on the guestion of scan linearity, and the effect of non-
linearities on tracker performance. It is possible that careful
measurements could be made on the existing tube and various tube
voltages varied in an effort to improve resolution. It is likely
that the most significant performance improvements on the breadboard
tracker would come from improved Reconotron resolution.

The results of the optimization studies conducted under the follow-on
contract showed that the current tracker design has been partially
optimized. It is possible to apply more stringently the results of
the optimization study to the current tracker and experimentally
verify that performance predicted by the optimization study could

be obtained. It would further be of interest to change the bandwidth
parameters to values which are more realistic in terms of probable
application.

« If sufficient interest exists, it is feasible to make performance tests
on the current breadboard, but with a different optical system, to
simulate operation under earth or moon horizon scanning situations.
Interest in this possibllity was shown at NASA/LRC and NASA/GSFC.

Similarly, the design of the tracker is flexible enough so that it
can be adapted to an approach guidance spplication without too much
dificulty. It should be easy to reconfigure the tracker for approach
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guidance missions and to determine experimentally its performance
for that application.

Our ebility to make long term precision measurements on the tracker
was hampered by lack of Reconotron resolution and by instability on
the collimator. The collimator instebility is being investigated
under IMSC funds and the collimator will be redesigned and rebullt.
If better Reconotron spatial resolution can be obtained out of the
current tube, it would be desirable to make more extensive and more
accurate measurements on perfcrmance ul ine tracker against gibbous,
oblate (Jupiter), and crescent targets.

Section 8 is intended to collect all salient information and to report it in
the perspective of having completed the program. Information contained in a
report like this, no matter how detailed, is only a small part of the actual
information available. Significant amounts of experimental evidence, only
summarized in Section 7, are available for inspection and discussion.
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